会员
Serverless架构下的AI应用开发:入门、实战与性能优化
刘宇 田初东等更新时间:2022-07-20 18:00:00
最新章节:8.3.6 善于利用平台特性开会员,本书免费读 >
这是一部指导读者在Serverless架构下开发、部署和运维机器学习项目的实战性著作。本书由阿里巴巴官方出品,来自阿里云和蚂蚁集团的Serverless产品专家、AI算法专家、Serverless解决方案架构师、Serverless工具链技术负责人联合撰写,全方位地梳理和总结了阿里在Serverless架构下的机器学习实战经验,得到了企业界和学术界的10余位专家的高度认可。具体内容上,本书主要包含如下几个方面:(1)Serverless架构基础详细介绍了Serverless架构的概念、特点和应用场景,Serverless架构下的应用开发、部署的流程和方法,以及传统的Web框架如何向Serverless架构迁移和部署,这些都是在Serverless架构下开发和部署应用必备的基础知识。(2)机器学习算法和机器学习框架在Serverless架构下的应用详细讲解了支持向量机、神经网络等各种机器学习常用的算法和模型,以及Scikit-learn、TensorFlow、Pytorch、PaddlePaddle等4种主流深度学习框架与Serverless架构的结合,为读者在Serverless架构下开发机器学习应用打下基础。(3)Serverless架构下的机器学习项目实战首先通过几个实战案例讲解了图像识别、模型升级、情感分析等机器学习领域的高频应用的Serverless化,为传统的AI应用迁移和部署到Serverless架构给出指引;然后通过两个综合案例讲解了机器学习应用在Serverless架构上从设计、开发、部署到运维的全流程。(4)Serverless应用性能优化总结了Serverless架构下应用性能优化的方法和经验,比如冷启动的优化方案、开发注意事项等。
品牌:机械工业出版社
上架时间:2022-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
Serverless架构下的AI应用开发:入门、实战与性能优化最新章节
查看全部- 8.3.6 善于利用平台特性
- 8.3.5 如何实现WebSocket
- 8.3.4 应用组成结构注意事项
- 8.3.3 慎用部分Web框架的特性
- 8.3.2 文件读写与持久化方法
- 8.3.1 如何上传文件
- 8.3 应用开发注意事项
- 8.2.2 开发者侧降低冷启动影响的方案
- 8.2.1 云厂商侧的冷启动优化方案
- 8.2 警惕冷启动
刘宇 田初东等
主页
同类热门书
最新上架
- 会员
ChatGLM3大模型本地化部署、应用开发与微调
《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化计算机13万字 - 会员
深度学习与计算机视觉:项目式教材
本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
智能计算技术与应用
本书面向初学者介绍智能计算的相关概念、典型应用,采用研究性学习方法和P-MASE模型,按照引入问题、寻找方法、问题分析、问题求解、效果评价的模式,讲授智能计算编程、数据获取和预处理、数据可视化、预测数据的值、分类问题、聚类分析、神经网络、智能图像识别、时间序列数据的处理等知识,并给出了两个综合案例。本书深入浅出、案例丰富、可操作性强,适合作为高校智能计算相关课程的入门教材,也适合相关技术人员学习参计算机10.1万字 - 会员
GPT图解:大模型是怎样构建的
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字 - 会员
图分析与图机器学习:原理、算法与实践
本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语计算机12.5万字 - 会员
大语言模型:原理、应用与优化
这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字 - 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字