![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739538309-djMyJg6U8v7mG5wBNn2zRi1gti9bAuAA-0-02a0dcfef18819e682d367d725f7c8e3)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739538309-CqoWrx6maSlazXpb5KEQ4Gog09vNuyQi-0-33721cddd5154dbf091cb709cc6d79c9)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739538309-1pjfdHGyLg24I1kEccDqmqy383KapDJx-0-13047edc2b3ebfaeb06112b3ac1da467)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739538309-uTBaH2kgGQsgVKpvjkCwl9YruPnKB8cN-0-b4e53954956fed41132cc4256ac60e16)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739538309-Ct42biaqtep8kSRQbQCBMH4gNvAQX51X-0-d4c70325de1fdbc7e9e4cf24b187cc0b)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739538309-9pq50qxpDz2y5iUGW1sjfbaVAv6A0edl-0-43cbece3085d36443556d3ffbac7eb53)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739538309-EfFKBJ77jyhe57cF1H7LnfS9sOayb7HH-0-a0c088927fbb95e952b3370c148b6ef8)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739538309-lq2OYtwb8s93k8iLjHfHRsgpxmNEk2sR-0-5c434794c5d0b0def09c102c2be90bbc)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739538309-PLot0lcuwADTTRIURt8qi5zOiSU1HWBx-0-8057f6c6188b62fbb44090588960de1b)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739538309-giVMmrw4WxPTw4eA5TEvbM5XViYn03J1-0-2b4790866161b72aa624b2b605dcf320)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739538309-JkeNMSvXFrAbFwOwEeapIMUMxdmDWeN5-0-cbd8cb59472d54b5f717ee92cb075250)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739538309-joAkzfXyuZokSxPkG8Zlxk364bFaImEx-0-a558695e87f9491e19f26913bfc3a519)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739538309-GP9CVEt11h5C7uzWpdMahJ1Cu0G4JNuK-0-9630b6ababdf1abc5ab80e2964a3a5e2)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739538309-m2h8K3WIPzWdX2EbRbPNhYCKFGt82gBo-0-0be46b356b6d8cfa1fd423924b258019)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739538309-xA2lCx5op58TVr2vLF2vBypvxTBYa7q0-0-ecdc4abc3880a6ea49077aac78ddbc1d)