![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739673040-Pyvh3YSu9alLsbJmd0hLEO3WRfNrVPpg-0-beaba22dc479151dad7b105b2bda65ec)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739673040-39NHdz7cJypanBIf6qDiYaozVhjAVLwn-0-694b6aa70d8c4ebcd6c82f9dd06f5e97)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739673040-BlhnxfvQD8PClCndaxbILGd2OEv4DUTa-0-d533c22d52c7b53ad8b5e8b5154fedc8)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739673040-AJED2yoztNM97u7qqq6WlYz0R9E0PgRD-0-5b373ae7468413b62610be88398747ea)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739673040-KE0rDBzyNOoavstycUpQ3Ab19gewvomF-0-7fbc9d89c389c0fcf22845df6cd829f6)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739673040-3NKpCmWl3V2RqYkVkXZG1eoWlAZuiFux-0-cda329d2176e8736c345d4c52d20c24a)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739673040-lvCztlVZ9SRUQCcJ7C51MQ87AiAyXdNi-0-2b0ea797c385ffc7be841504287b2456)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739673040-jIyoBCxJVqp9afSgjcesou7cBLumqECq-0-8df20f107a4f94d20a266371cc51b782)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739673040-AONC1nIE4AfowomUC4m2FQszUOOo6Xhf-0-612844abfb112a5b45c82edc83c7fe51)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739673040-oBYCYe26sFZYaMEizJcX3u7fV3xpd5l0-0-29fba02bafbf80fa2c7de67c73cab9fd)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739673040-VlV5xpM8HntErjEJes6IduZlCLLiYtJm-0-0ef108f1e6333f44123fd278bc3a48e0)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739673040-fittJaSqQkwGpTKywTTmNWuEaPn2B2KI-0-532d1f11f7798b34c47df504a5315bc1)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739673040-oZlr5qRzWNtJVYuJOug3H0zrTAkh3xlX-0-da9760b0a4ae71537157fd5a20b5b558)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739673040-m5BgFWlF7a7PUrqNVXzmKCYPWaRl31SI-0-8d3c8da5473947d603270cef231db435)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739673040-ZvjWsFvqw1t4MUBBRsfn3hBOj7HFABfX-0-b728f928c202fe9cba4c85f464c95b37)