![计算机视觉特征检测及应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/808/26688808/b_26688808.jpg)
上QQ阅读APP看书,第一时间看更新
4.1 图像梯度与内积能量
4.1.1 图像梯度
真实图像中的噪声通常使用加性高斯噪声来建模[49-50]。如果f(x,y)、fr(x,y)和ξ(x,y)分别表示图像点X(x,y)处的实际灰度值、理想灰度值和噪声,则有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_01.jpg?sign=1739512132-o1Wze2v7Q0z3ZhTMlXXC46XuHiHwQIhu-0-a2091a6d4e9579adaf349b02e5aa3528)
式中,ξ服从零均值、σ标准差的高斯分布,即ξ~N(0,σ2)。
记图像点X(x,y)处的梯度为g →(X)=[fx(X),fy(X)]。在数字图像处理中,通常用离散梯度模板计算图像点的梯度,大小为N×N(N=2R+1,R为模板的尺寸)的梯度模板的一般形式为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_02.jpg?sign=1739512132-GZQyM9gpj6lCJmZUXrnlmxTSfn1Mbloj-0-c2c63454d63da373719a1fe9060b9494)
其中,′表示矩阵转置。
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_03.jpg?sign=1739512132-Pr0VVypV7GSkgEmu1qwhG0whSoQ9ub82-0-4f206951fe8494e3220f62ea9b0e5285)
记:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_04.jpg?sign=1739512132-wqeRIxbevp813RvOg37Q6VsV0P7zdT7S-0-3ca3a398911bea7f395a2276347c97df)
则式(4-4)和(4-5)可改写为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_05.jpg?sign=1739512132-Bse5jTWW5H5MRlDYyggB655N4AzMBf8r-0-2e06fd10ec9fbf0046e490c9cc62d3ac)
由于ξ(x+i,y),ξ(x-i,y)相互独立,且ξ(x+i,y),ξ(x-i,y)~N(0,σ2)故ξx(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_01.jpg?sign=1739512132-sDRIVs6wV5Pi9Blifj9tlevcnKdF5BJz-0-38b58839fa56f47d815b2b54c26f1de7)
同理, ξy(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_02.jpg?sign=1739512132-AMxJJgeAS1wN4iOMsyCBsNMlcMp7hyVW-0-f3be76cadd23d7ad0e98db8e477dc56b)
于是,记
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_03.jpg?sign=1739512132-sNh8Ynss5Ifqh8AD5B9ZTjP0oL8xwR21-0-2ea1654d9b168b08da998d2887020300)
则有ξx(X),。
4.1.2 内积能量的数学期望与方差
考虑点X(x,y)为中心r为半径的一个圆形区域G(X)={Xi‖Xi-X‖≤r2}内的图像点Xi(xi,yi),记,
分别为点X和Xi处的梯度,点X处的内积能量定义为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_07.jpg?sign=1739512132-DKNkVh2CN3Rcy3pA9bjLi59oVrSmCqIQ-0-951633fe5e72aecae78e6cdb7ed44d9c)
将
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_08.jpg?sign=1739512132-YM8hgT6qKexz7fYhQyE3M91jT2XIUSDO-0-db3ce1e6b388ad0944b079a3f8aaa8c6)
带入式(4-17),由内积的线性性质可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_09.jpg?sign=1739512132-j4zpdCxXUnQUZogWfp4C1taBmSHZkAPT-0-b3890000879b0957961da6afb7786e85)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_01.jpg?sign=1739512132-SzKF0la7GnEUEycsVc3xZtfzr2CTcods-0-41d8df0cbd9b2a38d82e76dbb3e798ec)
因ξx(X),ξx(Xi),ξy(X),,且相互独立,所以内积能量IP(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_03.jpg?sign=1739512132-RKunlc4yLeKLs42stWp4DdAFJPJ5ya17-0-09e165afee9078a435e06edb36387ded)
内积能量IP(X)的方差为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_04.jpg?sign=1739512132-co8urpNpTtsw9CTJ8JQDOs3tVJI8qvoX-0-838d37bafa177cf05ceea2c4981e0e9f)
4.1.3 梯度幅值及其数学期望与方差
为了在下一节比较内积能量和梯度幅值在噪声抑制方面的性能,我们需要计算梯度幅值平方的数学期望与方差。点X(x,y)处的梯度幅值平方为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_05.jpg?sign=1739512132-RGaUFALaMwusAoaLqlvv0PKxlwFy6uIo-0-04b701ac4abc1b573a3cb6fbd2876f53)
所以,M2(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_06.jpg?sign=1739512132-i8twc9rVBymTqmdNimzZYlaBHorFAb1o-0-431fc559b1ea8244319008906eda6ddd)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_01.jpg?sign=1739512132-zHFcInsIM92TZQKgVR2mMrrgXurdWIGu-0-c92ae835ade6bf34c30891130fa9d223)
下面计算M2(X)的方差。由于ξx(X),,从概率论的知识可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_03.jpg?sign=1739512132-qVjxfdPLMkJfCoVfgS1btufid4dj3BVU-0-ebf975ae00cef349e25a19e64736dd5b)
根据χ2分布的性质可得:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_04.jpg?sign=1739512132-6P1V6Y7qIyd2lmRrjOs1wkzGzPPIcNRO-0-2c95a9a27e3fe9ab0026982e9bf0b41a)
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_05.jpg?sign=1739512132-Ub7tq4OQoY4E2V8otzOiI8kVj2auXwcj-0-641bb632a8823b2ce31ff774a479450a)
因此,我们有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_06.jpg?sign=1739512132-dKRFnqMtZJiiEHAFtsxMbzy3dGRI75PM-0-4586b39e21d6cd50addc9f08c1b80185)