![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第八届全国大学生数学竞赛预赛(2016年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)若f(x)在点x=a处可导,且f(a)≠0,则.
(2)若f(1)=0,f′(1)存在,求极限.
(3)若f(x)有连续导数,且f(1)=2,记z=f(exy2),若,求f(x)在x>0的表达式.
(4)设f(x)=exsin2x,求f(4)(0).
(5)求曲面平行于平面2x+2y-z=0的切平面方程.
二、(14分)设f(x)在[0,1]上可导,f(0)=0,且当x∈(0,1)时,0<f′(x)<1.试证:当a∈(0,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739140667-YVzQU2L0EHT9TaTl3dg6M8w46hrZQyZ1-0-5f21aec383817f274c24aef2ad9a4b58)
三、(14分)某物体所在的空间区域为
Ω:x2+y2+2z2≤x+y+2z.
密度函数为x2+y2+z2,求质量
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739140667-GpyoG4EcXJ6lgGhusNdTkeZfIwGy8vZ6-0-2bf7da0227fdc13e9fbac087281279e6)
四、(14分)设函数f(x)在闭区间[0,1]上具有连续导数,f(0)=0,f(1)=1,证明:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739140667-fyWgYdWYqvYSpHdOTzmJtNRhUhadzomo-0-67ad03a5d04bdc39af80ea0eb57c915b)
五、(14分)设函数f(x)在区间[0,1]上连续,且.证明:在(0,1)内存在不同的两点x1,x2,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0009.jpg?sign=1739140667-bL6eM3UGo1ZkWuncsAQEa7ZzaIc5wcAu-0-5deb823f23c76dfe88b168ec8e530ddc)
六、(14分)设f(x)在(-∞,+∞)上可导,且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739140667-awM8I8HbhajWwsFbP3wIcG3f0T3vmQOo-0-7706926ccc2d163713c339bb0cbbf490)
用傅里叶级数理论证明f(x)为常数.
参考答案
一、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739140667-tRrRIHdlYVeasphW2dAVV5DrszPmc6n8-0-285734691723c3826b130d47c6525e93)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739140667-mJPByY2ryTXwp11k0V0L81lzi9AtFff0-0-04156dbf87cc927973eef31eba25d842)
(3)由题设,得.令exy2=u,则当u>0时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0004.jpg?sign=1739140667-75BbEdqKfxIoEuJRzPFDvI5eIOfq5T0r-0-3bfa80b7ea16a10faad936b4554ab462)
积分得lnf(u)=lnu+C1,即f(u)=Cu.
又由初值条件得f(u)=2u.所以,当x>0时,f(x)=2x.
(4)将ex和sin2x展开为带有佩亚诺型余项的麦克劳林公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0005.jpg?sign=1739140667-1oDjZ9wYIcyqzJaWLn7xDVouTFpkDhUf-0-872cc9668d2e9395ac9bd538c516f71d)
所以有,即f(4)(0)=-24.
(5)曲面在(x0,y0,z0)的切平面的法向量为(x0,2y0,-1).又切平面与已知平面平行,从而两平面的法向量平行,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0007.jpg?sign=1739140667-tJ2yHdunqXyYMusTR9nzUls0lPLnLVcz-0-b55bf9aee267da4c51a9ffb79109e910)
从而x0=2,y0=1,得z0=3,所以切平面方程为
2(x-2)+2(y-1)-(z-3)=0,即2x+2y-z=3.
二、证明 设,则F(0)=0,下证F′(x)>0.
再设,则F′(x)=f(x)g(x),由于f′(x)>0,f(0)=0,故f(x)>0.从而只要证明g(x)>0(x>0).而g(0)=0.因此只要证明g′(x)>0(0<x<a).而
g′(x)=2f(x)[1-f′(x)]>0.
所以g(x)>0,F′(x)>0,F(x)单调增加,F(a)>F(0),即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739140667-ZqkVl63Kw9XLESuR6Axt6OFCMJUzoUGF-0-4696ef88e207b9e04f207f9cfaf154ba)
三、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739140667-CPJzLYw4lp3YD7hNoiuqAaaWzChJfj7D-0-72100c1ba55aaf5a0175bbb2f1d75a94)
是一个各轴长分别为1,1,的椭球,它的体积为
.
做变换,将区域变成单位球Ω′:u2+v2+w2≤1,而
,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0008.jpg?sign=1739140667-uYJddfW00QsRPJ3XQA7Hqro8B99E2CYn-0-edc0ce6a5ac08d4d7ddf98fc755e2b89)
而 .所以
.
四、证明 将区间[0,1]分成n等份,设分点为,则
.且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0013.jpg?sign=1739140667-uOBhgm9UwKtw9Ogb5q3ov0e8C2CrVhXw-0-1a0e266ca69f1e5abc4e1103c9f69862)
五、证明 设,则F(0)=0,F(1)=1.由介值定理,存在ξ∈(0,1),使得
.在区间[0,ξ],[ξ,1]上分别应用拉格朗日中值定理,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0016.jpg?sign=1739140667-8D3QLZe4wGLEfMBNRp5OIbxtgA7DERAX-0-36e046ce55cbc6b8baf5e71eb65d177e)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739140667-gSfW5AwmUYR4Q4uFjkjl8ttJ2BudEMSS-0-3e1931f1108fc81b16157f0c798184dd)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739140667-aY4dXT1AKr41Wt5OKubPodaCcl74aHsM-0-f6acb5f4be83a12fee0eaad2a6179b15)
六、证明 由可知,f是以2,
为周期的周期函数,所以,它的傅里叶系数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0005.jpg?sign=1739140667-vgh76POj7A6AQXtuuk9LokZM4i8IGTAt-0-3e3cb2b45c1b92b134bf84d2ceffd29f)
由于,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0007.jpg?sign=1739140667-flgNf9fI1VEuPdQYnm6cuffrqMXpY7IR-0-59f1813cb5d2dffb68fe932d70411be0)
故有;同理可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0009.jpg?sign=1739140667-ES5fzuuXe83cv1DcfpvosKJZxmhyDbCb-0-f886a9053817023741c0e2e2dfdc7660)
联立,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0010.jpg?sign=1739140667-7SKEUmrUuVB66bF2h9kHfkxv7lm6l9IG-0-8d7bcb8e101254d5e4f33c0167731c1b)
解得an=bn=0(n=1,2,…).
而f(x)可导,其傅里叶级数处处收敛于f(x),所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0011.jpg?sign=1739140667-BUgqPSzGZFdmOXe4uBPlj2tVl95iqnke-0-bf5ad58a34b79701fac05a25c254f2b0)
其中为常数.