![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739140797-bnx0XrFoLjgXOdHhtw0biq2glIgJivso-0-b32b8c06ee506c5c27cf7b166ca7b5e9)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739140797-juz3L6cjJHA9HT70l4H6VBXMIlpqlxe5-0-729255391b0b732b0390caa897b3d106)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739140797-H1ZurfNhsFEcIMDTwgBkWZxcSQMBf5SH-0-08f448253e5c142298c8e0b332f590c9)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739140797-KtHaakUkSKrlqdWik3wM6GLQ0lcJhenV-0-ca00fefdd7911169250da2d0110a6d5f)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739140797-kz2USUkrnblZzpX39XYIKvGGrHJhpIef-0-380016c8df92883fc20884e3874db349)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739140797-ZIMtDh9mpXmV1VMHm9rCqacAjtsxwQbT-0-cfe153dd31155a6ee54a6b7cc80ae8ad)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739140797-sYtYbnUjH63DEJxJkFF70OW98QqIcfXZ-0-3f2add6f0506f64447e131ddae3f49f6)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739140797-gjGHxV7ooJRqN0LccXcUpa17qyftp6UC-0-5badaf115803b3b75e490b35b22f2f4a)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739140797-mYvj66oCkCaoyRcc0TBQveShHzuzRCbq-0-c91f2229ede8dcfe35de17e6ae25f8f0)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739140797-fsoffBI0M76Uo39uBiUB957EcreGJZiB-0-45716d96d92936fc49d29297cc6f89df)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739140797-wrhMhe4u43CdyeLTnSqjhNBUiCWQ6png-0-d2573db9ca692532c354d7ef64240bfb)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739140797-SW16s5LCtALbVXYAubd2JFuJsRkpi0ZL-0-54fdc3e817724b47aac427a822af6aa4)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739140797-pwprq7lb0u5xloM9UWRhJB1j6iWusUw2-0-0a714e5189e0ee7021f7a53240cd5ae0)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739140797-0ovMiFA0W8tpFu1DnGWJrth0zQTNifNn-0-8b9e74ad0441ca604c06e5bde78bafe3)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739140797-zp8yvBHSB64duYWpdQ90ycTFCSAhskWE-0-43b30628dd310246d8ecf9b5dfa661de)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739140797-9OvkJ5TrYI08Qy2kGwWMqaQXDjCxKzf9-0-05d9f3c9e791509eae3f5895515063b1)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739140797-F3EBtYXuB0FomqssOlzVA6Edbkx2nz93-0-da750116bc9fcaa65b18a7c35bb38db8)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739140797-4utUVYcs6EGAmFKo6eFVjg53m8m9zrg6-0-77c15a48c56be7f075fed8f1682120bf)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739140797-Rdzw4gSAHztTyQh1mgvOPmgFZQ1h3Rx0-0-8db0c21687da35617f1a7460b91baaf0)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739140797-hcRH24e5ngDZptNKZloxWPkxWn3BdHMA-0-cc3b07875cabaa765cf40fe4ee35dbc3)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739140797-qfBcOzxeMdScMCWmcKrd8udbcrXMgOaU-0-1821ca5babaab31e18410c1c867150de)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739140797-Y4cOTMyg8vZakeG09GOOfpKh1x7gLrAK-0-a467e83b15ffd3930e2f18832ca2e03d)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739140797-7UZMTdMUJUKN9BPovE2uNADymSbfOwQ1-0-87f1348a88545ef21c04597034209a3d)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739140797-MDHxS3TC7xBQ6adEYXW9dwX2Kc9vHYCo-0-5b45052913e5b2edac05c96b1db3fb1b)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739140797-SMzEtf6zzr6a4Caum8ZzMLJQ6w1Ay9e5-0-bc24142fefe9e670536595a109a46e07)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739140797-3es839oNETKmVGE9LcqZA69263tXmAD5-0-42999f1b07c1ab69127aa60d0ca15b71)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739140797-fsI9BVm05alFGV9whbWPVUPqV5J2VJxG-0-1a6223746b543b9ebe260375ecb834c5)