![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739322749-T4FqGGH51zMfMuKaRUfUmbxFrmuZmFSj-0-45ca11ee0b838523ff55829cf71afcce)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739322749-813CCLoDoEBzuFEdDUMBmxvFIniqNhtU-0-c89ea4d169031fc9aaed9c39fbf518ae)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739322749-rcyC1YxZMrIwE32g7j0VkURyz8Np3smE-0-1d73d62e3c2c74e912f23f2655d8df7f)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739322749-KwH1trOol6iE4ECTBpcXQTHsMIcbTeKh-0-aa895bf4b4ce15cf1671e87dfe52a33d)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739322749-vCRIF6YSYsr3VVljkZdx8aipUyW5YJhL-0-d48859d0ea881097e349ecf7255c9883)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739322749-D9BhToYHCYp2F8gSxp7m0PDDHGPLAE4c-0-a6f3887e5bcefd0aa56b7e4cea7ffbb7)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739322749-Ax3mv78U6RywG9nNAozKTsXwll389Gub-0-2c47bdc63bc743974bbd9bb3376645dd)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739322749-B1ltc8gO1TAAYT9uhkhxXNAzs6fOM9Aw-0-7a71bfb84dba89b4c6348a4ea28ecf19)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739322749-5bNkx8J70PTbkSUgO5JPRAUr8mpruRu5-0-a107c8b79dfc2110bf0964e0c85686b8)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739322749-7qM6YHUUZ3gxy2WIfeQSRRlq2LmoflBs-0-90a17ce1c4ecc11b93ef8588b41a29ef)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739322749-o3NQYO28iEOsh6XUuo3o7xEXD15pdeZ4-0-9836f5d8881bdc44190485dc3480ec73)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739322749-mcOoaWIQlxW8PWC221KHIKG5YfIifKu6-0-cce41c2cdea0487a889fceb11a22ab2d)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739322749-AU0KjTEyA0AE7HIagzcYNjEkpqH0UTV3-0-bd8dd9c5e5076614893e79f15370ac31)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739322749-Gg4PE5c8QrI4re5j9wnw6ZkwoGaMtYqD-0-0cd68dee5db50235710d2204e10d7e09)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739322749-ZkHTnzSoBwWTybN9udbkz90D3V3qchEW-0-b30f10c5b4e684caf1dbfc89bad5a87d)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739322749-h4lGz6pqzSmnKETiES6HCsX1n5DzeVdF-0-413874bd9a0b71cd4314c28e4ad26219)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739322749-TJhrI0JqvTYTK6qxyXo8aRpaoI6rtWGH-0-6a0c58481e2932ff2f5b8e59db1d31a0)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739322749-fJ9w9BYI3ysGC5o5JHYngnViq2w1rUbZ-0-eca8a5a13e4e37df1a2f28df511ed8e6)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739322749-UMASNFiU0YoIyWaQnIoZPVbKQ5fboYrf-0-9cd2deb6a71e25aeaac6c2b46cc97d3f)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739322749-2tD9uf3vBTwX876RhrB5BBCSXFD8ITli-0-2afa991c68dc6ddc53752e58fb23c099)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739322749-jsejr4cg6gNaljEbFaZQQ0Nvq1FENZM3-0-6e995eeda37f7c01b0d81afbf4cbc78a)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739322749-Ln3EZRPlheJ01YYyZ59HcCTtUJBH2CeU-0-784f203fe06784ab36bc5e41e12ce04e)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739322749-Kgx8gm54hCPhOr8UtyMPogm4cuCe9qle-0-ef95ee565b66264857ab79639429cf42)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739322749-zBGbIzjKQraZkgrYGLcBWgJZ4lxzyAvG-0-a6fea0ea2ee7be1d1ae54c186518ccba)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739322749-76Zq9v3auggXjwGhuDL7IBGAZQNQb9fB-0-1c6d8b6880f9192ff3d5951ce62a5560)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739322749-14uaZq6LNkj7JNrfwCla4AOoA1jr7C4G-0-2fefc91b728e8c9433d22bbf7a34e8f0)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739322749-5bWaSdZuWsnMxXskNs810He2a1wE6n1Q-0-87dbc5b011b926e97c35263849066554)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739322749-2WCPyC7PdI4LtV0R2JHPOdbgWIyGqDKD-0-0d80385569b7df7fc07bc82888959491)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739322749-4foM6Zu82nRvOPu1GIvbp6lb1ZL88jPy-0-fb6133efa3d3b645c6ff9a210694262e)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739322749-nQ0rXbSvtHxANTHyAUtN2Nxv4dkaMaiA-0-38e1bff1031b149ace36f7d33d3a73df)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739322749-R7pMTzZPcllQjrAjbPYDbR0Vd9oIoUp4-0-f3673fe456442d900fe8b386dca46cf5)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739322749-UtTHjnMcwWXLcYAoRr7fJRv5eZugV4v8-0-1ca860f0fa1018506fe51fd4bb234d85)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739322749-aM5aoG1moIOLNAqbv1csgBuk2iy2g7z1-0-7be7be04b2f6aced4866eb78c52dc782)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739322749-VJxuwyV6rALGbGgNO3akoZRlTRnzjMC7-0-3c90502bdf5c11408f2983a5c1510e36)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739322749-QHRvyFJjkIU6wGvqpJzNschIPR67DaOa-0-914b11d8c9b663d96b72316dc5bd77de)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739322749-sBhuc7UtrExi4C5gB1tCskRD7jJsMFmL-0-10adb192c974ba460f84c40f6f7c9c6c)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739322749-DMw04ORFKCqrtM8WWe0ajAtlpjzgD5BL-0-c68db56eb8ee76f8c04695c54c55e6b7)