![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1738905307-Fj2XdQUkTTcNCsgrPE8vuGllCuJGYQBl-0-e0e7353ddf9f082d4e6324578e51fd01)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1738905307-SshoYpJO3Z6YFgndTlwc9cBkHcOFG0Cr-0-b69e6fd7c6d89a709a653cdc30ef1a9c)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1738905307-utrlxhmyT6tl9WSqDRIZZ8c604wXUw2H-0-34ed4a3d3d491585c393fd2535f529e9)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1738905307-BeNh7Sls7E27GtE77MZXZnNHc9bjT4lm-0-4e9bc4ba499b5e95b1d96d99ccff5f3e)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1738905307-RVgHtpCssKgf0qJxM2QNZTAk2LELm1j5-0-fab596b802f76542e296527d96fe2141)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1738905307-o1DjCf6vRywToSaw5Vmdqd6X59ULBhy5-0-cdfd3975a38679b81ecc828facca5bc8)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1738905307-HPPhKqNjhscVjv17NswjHOKHXPBewyU3-0-8e6885a4d792ad02b5eaad7773d04aed)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1738905307-AR5YFyb2DORGW7xxjV3y1P7kRBzoolDT-0-b41125ea6c98df9220091049a440cc4e)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1738905307-DHCPY6rvX60dzN7PrQBDPaVHObau2Hkf-0-479beeadfaf8ce5a343e961f61444943)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1738905307-Y0oN2yE3mAaiwrxtUgFsqrRrmkFmebpl-0-11f05c2704f6df9c1b49abe600648286)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1738905307-3PzgKCEkd43Pyw8rgn4TRyWu9Ybdmjix-0-171492a313ae57133757527e24fc855a)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1738905307-2K8kaZiQmVBwShUdgmx0E73wjytQXNSv-0-f374194d7a333f7327b4f40ad6f6471c)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1738905307-qLC8Cpvf0zjfzPEBzGTdiTkxztbeMQbS-0-86df0da3147c9f39ca4397c7c593aaca)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1738905307-7JxL3WCHq6pJrvEvSan1KZettFYTjWBQ-0-840da80bef27c3d77d4cb36710071a7a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1738905307-0dACvMJMyCpZhSMik2QsEMgBejcnWttc-0-8f1fafa6f3eb4b9223e835ccf49d7172)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1738905307-Y7xls4Bxu6GZ3eX3lF9gNsmRlK2D3LNA-0-725c96a4f8039e044abfa1ba74bb04f0)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1738905307-lp8lb6yu11dpmw1tHKM1FXOgsDkmooRG-0-d781b2152debd53bfb36067bdcf9e38b)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1738905307-OgAFh4nOJ1ANhXyhqGPDdt2Gpb44emy1-0-60381da645d352e5c4746f9bac5e6577)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1738905307-Do6tSgUCjg85BcCADse8P3XnpANTmkLr-0-b4ab10b6f5effd71548b2b328c7db46d)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1738905307-B8fhYfSCpadhpKew2cAz8fmYeJFk01Vk-0-30fcc9941217c524f9e9d70cb1088013)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1738905307-RxhZmv1R4lfs7ciYWswTQ8LlGUmKJdGD-0-967bbd3ea98d94dfbb3dcd7a0e49b95d)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1738905307-pXxnhiGkXoXgxZsffsvRwVjeGg4zwxMk-0-9c435d9a3adcd61f0860e806f863955e)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1738905307-gwkMnRquYvwkWn0TWOne5YTxi88Z6yzQ-0-5a2f2f35ace0d001c0b33085b58f6f0c)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1738905307-WQfJXEkm0ltWV6jvX7i8sQXdIT4OmNMN-0-070c2640d8c3796755a5921937b60dc8)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1738905307-uEHkvXJNGV8fwLOwBYQVpzxDXaHNuwEl-0-4a2bb5c81e2a6f827c1d89a9885d6123)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1738905307-yVZgke4YFCTLIqQkNb2CEEbwlF29js3S-0-3848fbf9ecc26d1c225b38db5d6750fe)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1738905307-HnXsOnNGWEumBvGS1YVLbGcTcjNAUi0D-0-9f44219e07ddc045b17dd84ea1de4530)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1738905307-iHIpmpgfNpfw5nSHVWGrC0PAwWj7k4ub-0-60b343ecf7b66d33de58a034ec8724e4)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。