![伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/619/27032619/b_27032619.jpg)
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1738977163-WA7egLaWfioGLUuOtnKgTq1QgEHOTx54-0-eaabc6ac1ab4d37f4a1dc0a20743fede)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1738977163-Pre3jlzpjseW1jcZ3aW122YYGYD4Aa6V-0-9e556389d263e8d23986956509f190d6)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1738977163-cq7NdX8bbDfItwwtzQmNxDC1ucgDFdTR-0-648312acf40e1b368359b6175d969a03)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1738977163-9hhBa4aZdZOxF1Tppsas8YslA1Rij73f-0-5204526ab338f427bd83b4cadf6eab4c)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1738977163-Yhb5JMVY34y7zRhdFlyQWyfwdqFjMG2r-0-f11fc6e7d2206c97f1f7a7742b0a7b31)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1738977163-YvLbKNUJGL694HMbfRErfcfO3hxykIyn-0-5b7c95ea35ff20d0589249d062416503)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1738977163-pkv8rSBUvQYP3Me9UzJBwNNM9DUUmFbH-0-a0c518b7721cef3d5e0d45635c55898f)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1738977163-0j7g1aOTbe33n9auwsACgWpN64AQDGns-0-8a27a38138ad778ba8861fc98636b79e)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1738977163-2PjtNJ6yQ7Ah8qQb4rbiXjHD8f4yajXe-0-88bb6d132be2c82308e03e8d535fc43b)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1738977163-cXInk3YdMeNiaiOYrdvdt2w00jV7YiTM-0-d734f0d3da767c587d629173884901ee)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1738977163-mUFnT5kzLl0YHe2e9ITVZSxhCUCWS75H-0-6d7d28cf6d1f90bae8e219ef7443cdeb)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1738977163-jmdMwY84Z9nEhd5ofKq7986JgrkaOHYL-0-de138e7d0c7fb250ad3d6e90dadf47a2)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1738977163-rqXiYAmASBQRKSo4iw8W3JlkJSI33E47-0-21fbc98fe5d78a7c966b7920cb0f084b)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1738977163-CM5XikWhTVNKAFy126EO7vZOy6XdKj3M-0-1969605b8d8c8265236fded733f5b124)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1738977163-5k37RQFmAmobEGIM22gKHltMyTaQKJ56-0-4fc46d43a704eaef7b9b025a3f766a0a)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1738977163-fO4H0aQQuAyxP2YOambV1DLRZVOJJ1pu-0-410cbf7d58e12e5b7cea1e0bd06503a6)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1738977163-0uiRN6MJUlrvHHSXG40J7mRYXDnZktuJ-0-5ce873ff6e5868abeffaf00460a715e9)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1738977163-oHz7Forr1GwWS089BBLF28H2ZlqUAqf1-0-8cc49454a9edefd0c09746edb4c36aed)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1738977163-R638glj5NrwV2jsmCE831J8krw9DlNIN-0-2659780aecab197d2ffa5c1df4bb2127)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1738977163-exlJYsTk40RhIx5yeEYYJoWiM79sRwnS-0-a69bbf778727512fcd58b05ac1547ad0)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1738977163-bIQoCKQpQf6SmsArZKkNkFZkrF6UbJfZ-0-d6361eb8f96ccf77bcf9da073805c8dc)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1738977163-2Q0GBr22XjOuFP5io9OzqRsvV4n2Tyl0-0-99716991de7cbba11c79d21097fc4308)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1738977163-uB1UylssHEydOgCb8vJr1Se53RFETZBg-0-1fd7db994622d94ae36394e2e329f283)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1738977163-YjcWnxy6xiUXGdQZH0f2PLlaeeShUgUh-0-b4b72a2062e6ee6cc12bc87f3b37d4fd)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1738977163-kLOADz4t16yjwdeOr8uALYMqP5kZzMT5-0-e57d3fdaf116447c99bc71907741efc2)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1738977163-t1vtYRLruYjpPZS3hWTBoMLp5Vsgt2vJ-0-d70be0a371d99998a526d7efb9381996)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1738977163-PIGa7LUNz52XZg0FLNL43eeuhwX9A6kO-0-53bd5906d7ce7ace00edd101e6abfd92)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1738977163-UpQagVMHKGhTmuJjIdvVHajgyagJXA2i-0-2a476570775839ff597396b88b0d779b)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1738977163-nGp4GekQvGAbtWe8c9Y9DNddmKkA1W6H-0-a316043a21bbf95fd98197c8b6789bf7)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1738977163-2w6GZGJtKjYG7howoQftTaSaaUDpTnp1-0-7b0bf42be8c4cf143d70e1e92831e62b)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1738977163-1iL2ZbHtQzubVxO2jS8XSnsO3JucUfFV-0-767aed6465035cae796384e3d2443867)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1738977163-0TSzzvz0xawYv09TXCTAhWxbhA4sUvba-0-7f6379875fe3836ad03a0d65441dbe06)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1738977163-9SFCQwDwy6fmJr59DKPZyKzGYOP4BLXz-0-cdb7faa8fcef528dce724ed1a42ccb70)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1738977163-cH4jzWNBhn7Rz49VqguAkVXU9wDz6Xnr-0-d2596046c7e12201c44058b039e487e9)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1738977163-1MdqRAPmBIK8h8FxzkmJFwpeRNQ9Vhdr-0-809a42c4e1a8f3721bda64b0ae661856)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.