![吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/29/27051029/b_27051029.jpg)
2.2 课后习题详解
2.1已知描述系统的微分方程和初始状态如下,试求其零输入响应。
(1)
(2)
(3)
(4)
(5)
解:(1)微分方程的特征方程为:λ²+5λ+6=0,
特征根为:λ1=-2,λ2=-3,
微分方程的齐次解为:,
代入初始条件得:C1=2,C2=-1,
所以系统的零输入响应为:。
(2)微分方程的特征方程为:λ²+2λ+5=0,
特征根为:λ1,2=-1±j2,
微分方程的齐次解为:,
激励为0,代入初始条件得:C1=2,C2=0,
所以系统的零输入响应为:。
(3)微分方程的特征方程为:λ²+2λ+1=0,
特征根为:λ1,2=-1,
微分方程的齐次解为:,
代入初始条件得:C1=1,C2=2,
所以系统的零输入响应为:。
(4)微分方程的特征方程为:λ²+1=0,
特征根为:λ1,2=±j
微分方程的齐次解为:
激励为0,代入初始条件得:yzi(0-)=C1=2,yzi′(0-)=C2=0,
所以系统的零输入响应为:yzii(t)=2cost,t≥0。
(5)特征方程为:λ³+4λ²+5λ+2=0,
特征根为:λ1=λ2=-1,λ3=-2,
微分方程的齐次解为:,
代入初始条件得:,
所以系统的零输入响应为:。
2.2已知描述系统的微分方程和初始状态如下,试求其0+值y(0+)和y'(0+)。
(1)
(2)
(3)
(4)
解:(1)方程右端不含有冲激项,y(t)及其各阶导数不发生跃变,则
y(0+)=y(0-)=1,y′(0+)=y′(0-)=1
(2)将f(t)=δ(t)代入微分方程,有
y″(t)+6y′(t)+8y(t)=δ″(t) ①
可见y″(t)中含δ″(t)。
设
y″(t)=aδ″(t)+bδ′(t)+cδ(t)+r1(t) ②
其中r1(t)不含δ(t)及其导数项。
积分得
y′(t)=aδ′(t)+bδ(t)+r2(t) ③
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image313.png?sign=1738985241-L5cnCY6ULwcHCQxXuV1KWnT98l9Ahrjz-0-5741eb989a7c418d4b998811455cdced)
而,
再积分得
y(t)=aδ(t)+r3(t) ④
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image315.png?sign=1738985241-ft570Qov1Qtl8iDqTI4gqu21uMVMIxGL-0-01cec11841d99cdaadef9a9b4f49867b)
代入原方程得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image316.png?sign=1738985241-G0gO0cyHCsIMFQlhs3YvliaWFzC9Pmqn-0-2f6931ab67f54288ab26696a9c7e873c)
比较系数得:a=1,6a+b=0,8a+6b+c=0
解得:a=1,b=-6,c=28
对式②③分别从0-到0+积分得
y′(0+)-y′(0-)=c=28
y(0+)-y(0-)=b=-6
所以y′(0+)=y′(0-)+28=29,y(0+)=y(0-)-6=-5。
(3)将f(t)=δ(t)代入微分方程,有
y″(t)+4y′(t)+3y(t)=δ″(t)+δ(t)
可见y″(t)中含δ″(t)。
设
y″(t)=aδ″(t)+bδ′(t)+cδ(t)+r1(t) ②
其中r1(t)不含δ(t)及其导数项。
积分得
y′(t)=aδ′(t)+bδ(t)+r2(t) ③
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image317.png?sign=1738985241-JfTe6naSPW5dgaXIWYDy2WFecpAegpMh-0-1bec36773ac3201ff999c0d7f8a7b102)
再积分得
y(t)=aδ(t)+r3(t) ④
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image318.png?sign=1738985241-OVyH1QCtW1n95vojj8UZNt2HeLLHgaVa-0-4fea25163db3a1b160ce9308c7fe217c)
将式②③④代入①得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image319.png?sign=1738985241-H4ynIXEUx2H8HT7rfBzIQmPzn4cVTyo8-0-12c368ba3dd54761ef295125f5f551d2)
比较系数得:a=1,4a+b=0,3a+4b+c=1
解得:a=1,b=-4,c=14
对式②③分别从0-到0+积分得
y′(0+)-y′(0-)=c=14
y(0+)-y(0-)=b=-4
所以y′(0+)=y′(0-)+14=12,y(0+)=y(0-)-4=-2。
(4)将f(t)=e-2tδ(t)代入微分方程,有:y″(t)+4y′(t)+5y(t)=-2e-2t+δ(t)。
可见y″(t)中含δ(t),y(t)中不含δ(t)。
方程两端0-到0+积分得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image320.png?sign=1738985241-rpE1DhvQ3xYuIL7SnP941xD4r0lMV08B-0-5592e956a31edb74c3f9853084344efb)
y(t)在t=0处连续,得:
所以y′(0+)=y′(0-)+1=3,y(0+)=y(0-)=1。
2.3图2-1所示RC电路中,已知R=1Ω,C=0.5F,电容的初始状态uc(0-)=-1V,试求激励电压源us(t)为下列函数时电容电压的全响应uc(t)。
(1)us(t)=ε(t)
(2)us(t)=e-tε(t)
(3)us(t)=e-2tε(t)
(4)us(t)=tε(t)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image322.jpg?sign=1738985241-aCeMlrUwcJfglO9MdlD7JyqMiCND0dfx-0-96d20f662b8076bfb5da6b6e9aa6a5ea)
图2-1
解:由电路图可知:;
代入初始条件得:uc′(t)+2uc(t)=2us(t)。
(1)当时,方程等号右端不含冲激项,故
uc(0+)=uc(0-)=-1
微分方程齐次解为:uCn(t)=C1e-2t,
特解为:uCp(t)=1,t≥0,
全解为:uC(t)=uCn(t)+uCp(t)=C1e-2t+1,t≥0,
代入初始条件得:uC(0+)=C1+1=-1,
得:C1=-2,
则电路在此激励下全响应为:uC(t)=-2e-2t+1,t≥0。
(2)当时,方程等号右端不含冲激项,故
uC(0+)=uC(0-)=-1
微分方程齐次解为:uCn(t)=C1e-2t,
特解为:uCp(t)=2e-t,t≥0,
全解为:uC(t)=uCn(t)+uCp(t)=C1e-2t+2e-t,t≥0,
代入初始条件得:C1=-3,
则电路在此激励下全响应为:uC(t)=-3e-2t+2e-t,t≥0。
(3)当激励uS(t)=e-2tε(t)时,方程右端不含冲激项,故
uc(0+)=uc(0-)=-1
齐次解为:uCn(t)=C1e-2t,
特解为:uCp(t)=2te-2t,t≥0,
全解为:uC(t)=uCn(t)+uCp(t)=C1e-2t+2e-t,t≥0,
代入初始条件得:uC(0+)=C1=-1,
则电路在此激励下全响应为:uC(t)=-e-2t+2te-2t,t≥0。
(4)当激励时,方程右端不含冲激项,故
uc(0+)=uc(0-)=-1
齐次解为:uCn(t)=C1e-2t,
特解为:uCp(t)=t-0.5,t≥0,
全解为:uC(t)=uCn(t)+uCp(t)=C1e-2t+t-0.5,t≥0,
代入初始条件得:uC(0+)=C1-0.5=-1,即C1=-0.5,
则电路在此激励下全响应为:uC(t)=-0.5e-2t+t-0.5,t≥0。
2.4已知描述系统的微分方程和初始状态如下,试求其零输入响应,零状态响应和全响应。
(1)
(2)
(3)
解:(1)①由零输入响应的性质可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image330.png?sign=1738985241-m1b2KOrFC5Gk6uX8xPSMFQHEd5sMrstZ-0-337eb1e27412ca254b144fdd9b4ce4e8)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image331.png?sign=1738985241-Vh0SnRfoZG6SKU01PvviHJDkLFQV3yEZ-0-f219b9e3109f99c4dff038ac046acd45)
特征方程为:
特征根为:
微分方程的解为:yzi(t)=C1e-3t+C2e-t,t≥0,
代入初始条件得:yzi(0+)=C1+C2=1,yzi′(0+)=-3C1-C2=1,
解得:C1=-1,C2=2,
故系统零输入响应为:yzi(t)=-e-3t+2e-t,t≥0
②由零状态响应的性质可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image334.png?sign=1738985241-6PJZe5qXJsoXYfhtSXdg4dG0CDrlhOCd-0-3cd3194f5a95a5a2cbb1df55e9d7e7e0)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image335.png?sign=1738985241-m2deJEfEa88ZMGvKrdG8SNYLq2165GTm-0-b66690e3554d52adde1378149a33b969)
齐次解为:yzsh(t)=C3e-3t+C4e-t,t≥0,
特解为:,
全解为:,
代入初始条件得:,yzs′(0+)=-3C3-C4=0,
解得:,
故系统零状态响应为:,
综上,系统全响应为:,
(2)由零输入响应的性质可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image342.png?sign=1738985241-6SFPJ5Xt01wDQebUitFY3LTqARM1c3Fk-0-9c099ade7af64af52b6e445b66d63c82)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image343.png?sign=1738985241-lQlGFe1b4Ru3WYfXBxIiJ3xITYopwXu9-0-5f9f44084e4bfdf1341ffc5e67db84c6)
特征方程为:
特征根为:
齐次解为:,
代入初始条件得:yzi(0+)=C2=1,yzi′(0+)=C1-2C2=2,
解得:C1=4,C2=1,
故系统零输入响应为:yzi(t)=(4t+1)e-2t,t≥0。
②由零状态响应的性质可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image347.png?sign=1738985241-YWr0HNreBJlDslols8uBN0qrmGEL4eWF-0-34e4e029ebc1476040322b0fd522cc78)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image348.png?sign=1738985241-QrpbenigfIOOHtfKNyt2Fp84aJCzjUZw-0-b17bfc48ba666a703dfa6dde04217ca5)
方程右端含,比较可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image350.png?sign=1738985241-rRefqZTo9E02aAE8V1h1ntgwCsD6Q6UL-0-e57017dbb67c17a7d66182301a820d2e)
齐次解为:,
特解为:,
全解为:,
解得:C3=-1,C4=-2,
故系统零状态响应为:,
综上,系统全响应为:。
(3)①由零输入响应的性质可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image356.png?sign=1738985241-qNXHX4EQ5t9pYaBcpBzuX1w1OrCItXBx-0-91686d1b47026f5926eb6e59fbe24bb8)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image357.png?sign=1738985241-lYXj9tzInAMx3yFN6G7q5jmG7mVwBQEq-0-f1bba482f0a31dbee9b3f76f5c11f306)
特征方程为:
特征根为:
齐次解为:,
解得:C1=0,C2=1,
故系统零输入响应为:。
②由零状态响应的性质知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image362.png?sign=1738985241-kGjRzNRqVtWMhGkx5uzfOBm9iG9T4wMO-0-17af1ee30fa21203ff14d30928ce59db)
方程右端含,比较可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image363.png?sign=1738985241-RcOCJKfAAJSIp5XlNKoIdj5fxI5aPsU1-0-82e63909fcabf8dd9c9e0b9c4212fd3a)
方程的解为:,
解得:C3=0,C4=1,
故系统零状态响应为:yzs(t)=e-tsint,t≥0,
综上,系统全响应为:。
2.5如图2-2所示的电路,已知,列出i(t)的微分方程,求其零状态响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image367.jpg?sign=1738985241-h7R5yAdAWQdV5t1KLA4mKZWGhkxfVZwu-0-bacd9d27c34186ded1bbd754244e602a)
图2-2
解:各元件端电压和端电流的关系为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image368.png?sign=1738985241-ggpHm9ac7q3S5pVsRcdHn3jIO3QQWiWL-0-5883a273c6552c49dac61506ddb2819f)
,
由KCL得:,
由KVL得:,且
,
联立各式得:,
代入数据得:,
零状态响应全解为:,
方程右端不含冲激项,所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image375.png?sign=1738985241-N4plFvor0cT00lEdNdjhWaRHTWEDzvkK-0-9ecfa301127fb018a83344da2dfbca36)
解得:C1=-2,C2=1,
故零状态响应为:。
2.6如图2-3所示的电路,已知若以
为输出,求其零状态响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image379.jpg?sign=1738985241-SOewVMm92jjC7b0Rs6SWchEEdtFpLVFP-0-af6c169df3cbe93795c9794232f6ccc6)
图2-3
解:各元件端电流和端电压关系为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image380.png?sign=1738985241-nh4ukNt2jIia4RkD3Dvu9J4ryQLCG0g9-0-2768bc09f92375a0838f32c252834fb9)
根据电路元件关系有:,
联立各式可得:,
代入数据得:,
零状态响应全解为:,
方程右端无冲激项,所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image385.png?sign=1738985241-E9h6brdKrMJ1AI0qKdX8RSl3OdnSRFBE-0-aaa4aae4502a8e05feac64e1a1b83fb8)
解得:,
故系统的零状态响应为:。
2.7计算题2.4中各系统的冲激响应。
解:(1)设冲激响应为,则有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image389.png?sign=1738985241-h0XFzzlrI6pmOQWuRrtkL6Syozn4p5tA-0-c771622744ed24c14cb03bf6c3e85405)
比较可知,中含冲激项,所以
,
微分方程齐次解为:,
代入初始条件得:,
解得:c1=0.5,c2=-0.5,
故系统的冲激响应为:h(t)=0.5(e-t-e-3t)ε(t)。
(2)冲激响应h(t)满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image395.png?sign=1738985241-SYhg5r6v988J4nnR3FXVRmtSVxSm3Kh1-0-da723fa63198dcf9364488ba1824cef3)
时,
,
比较可得:,
齐次解为:,
代入初始条件得:,
,
故系统的冲激响应为:。
(3)冲激响应h(t)满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image403.png?sign=1738985241-jWi4NRYvaOQoVoOXOTqmrLweijaXGtjj-0-eca6cfd906bdf4f3fca508042b751edd)
时,
,
比较可得:,
齐次解为:,
代入初始值得:,
,
故系统冲激响应为:。
2.8如图2-4所示的电路,若以is(t)为输入,uR(t)为输出,试列出其微分方程,并求出冲激响应和阶跃响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image411.jpg?sign=1738985241-MYSOL1TXwbWaBT022REVjH63NrK6M5sM-0-7c2325dac254e33c19b3b7cb57d5a655)
图2-4
解:由KCL及伏安特性知
,
,
,
联立以上三式得:,
代入数据得:,
设系统单位冲激响应为,比较可知
中含冲激项,
,
解得:,
代入初始值得系统冲激响应为:,
则系统的阶跃响应为:。
2.9如图2-5所示的电路,若以us(t)为输入,uc(t)为输出,试列出其微分方程,并求出冲激响应和阶跃响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image422.jpg?sign=1738985241-9GXBhuO4hCUiGpSV8PMFtOKeDTdZf64p-0-a2d82be90042f4295a1eca45a7b9a22a)
图2-5
解:由KVL得:uR(t)=uS(t)-uC(t),
由KCL及元件伏安特性得:,
联立以上两式得:,
代入数据得:,
阶跃响应g(t)满足:,
方程右端无冲激项,所以,
微分方程全解为:,
代入初始值得:,
故系统的冲激响应为:。
2.10如图2-4所示的电路,若以电容电流ic(t)为响应,试列出其微分方程,并求出冲激响应和阶跃响应。
解:由题2.8可知:,
微分得:,
由元件伏安特性得:,
两边求导得:,
代入微分方程得:,
阶跃响应g(t)满足:g′(t)+2g(t)=δ(t),
等价于:,
微分方程齐次解为:g(t)=Ce-2t,t>0,
代入初始值得阶跃响应:g(t)=e-2tε(t),
故系统单位冲激响应:。
2.11如图2-5所示的电路,若以电阻R1上电压uR(t)为响应,试列出其微分方程,并求出冲激响应和阶跃响应。
解:由题2.9可知:uC′(t)+uC(t)=0.5uS(t),
根据电压关系:uC(t)=uS(t)-uR(t),
代入上式得:,
冲激响应满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image439.png?sign=1738985241-42fOOewi90AOXBphe7VnW04aE6SdrA3j-0-a37d51a0338cd4fe53e8b02c05de5c79)
由于方程右端含,故设
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image441.png?sign=1738985241-cBOdT80mWJUfwmDzR3b9HKVNsAm07ehR-0-a300bf2b4013e3c7c6201fe026e999f0)
对式②积分,得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image442.png?sign=1738985241-dkskD1J4NoFcZfORztkSuzcYQRdfnSVE-0-95edb1963c5a460d8696aa7142f1be82)
其中均为不含冲激项的函数。
将②、③式代入①式中,整理得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image444.png?sign=1738985241-YFE1y9ve9s0qF0YnxutZSdDv6E7NvpA1-0-8ff2079a6b2e2d0a74eadc008e0d4d07)
比较上式冲激函数及其导数前的系数,解得a=1,b=-0.5。
对②式从0-到0+积分,得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image445.png?sign=1738985241-A2CLkdIlitx4Gh6VdmFfcFusSlcYFjHf-0-c4d6113b721687a6305bc9b29d4dc7e1)
因为满足
h′(t)+h(t)=0
故可设齐次方程的解为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image447.png?sign=1738985241-OwOcfdjuQs7Q48YFm86GqMidEzXdY0ZS-0-d1db1a8cd6cb2051cf0fc2bb05e4d76f)
将初始值h(0+)=-0.5代入上式,解得C=-0.5。
所以
h(t)=-0.5e-t,t>0
当t<0时,h(t)=0,且由③式知h(t)中含冲激项,且强度为a=1,因此,h(t)可写成
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image448.png?sign=1738985241-LBCFLnvVBNuCodfp7uyMBuHwcgjNEzyO-0-5d67dac418765a9946da322247eb331e)
根据阶跃响应与冲激响应之间的关系,得阶跃响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image449.png?sign=1738985241-ZLf60oewc69pPMKigaYkvzOOdR3XRawP-0-6894e0c66939f06828802a178f41e085)
2.12如图2-6所示的电路,以电容电压uc(t)为响应,试求其冲激响应和阶跃响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image450.jpg?sign=1738985241-ZA5UbCZZo5kocqxn6STYaDx6Ns6i5AL8-0-1c88de77e930175f507b1dd29c2b9d8f)
图2-6
解:由KCL及元件伏安特性有:,
微分得:,
又因为,即
,
所以,
代入数值得:,
阶跃响应g(t)满足:,
方程右端不含冲激项,所以,
微分方程全解为:,
解得:C1=-2,C2=1,
故系统阶跃响应为:,
系统单位冲激响应为:。
2.13如图2-7所示的电路,L=0.2H,C=1F,R=0.5Ω,输出为iL(t),求其冲激响应和阶跃响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image462.jpg?sign=1738985241-DST6oj4rrNVRIDIigyZhJJrACMa8DGUU-0-f1aa88c8dbff34ffb50b859c0a8eae45)
图2-7
解:由KCL及元件伏安特性可知:
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image463.png?sign=1738985241-wmPSxhC2dJmzOq05SABX5XoD7NX7WT2g-0-c35926b1ee6c038a159db87ffef380d4)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image464.png?sign=1738985241-3p8i7VDgol14de3OHVViXXWm5KRQjdDH-0-302d697968203f00ac97b8fff20dc693)
联立可得:;
代入数值得:;
阶跃响应满足:;
又;
解得:;
则系统阶跃响应为:;
系统冲激响应为:。
2.14描述系统的方程为:y′(t)+2y(t)=f′(t)-f(t),求其冲激响应和阶跃响应。
解:冲激响应h(t)满足h′(t)+2h(t)=δ′(t)-δ(t),设h1′(t)+2h1(t)=δ(t),则
h(t)=h1′(t)-h1(t)
可知:。
代入初始条件得:;
系统的冲激响应为:;
系统的阶跃响应为:。
2.15描述系统的方程为:,求其冲激响应和阶跃响应。
解:设新变量,满足方程
设冲激响应为,则有
微分方程齐次解为:
代入初始值得:
系统的冲激响应为:
系统的阶跃响应为:
2.16各函数波形如图2-8所示,图(b)、(c)、(d)中均为单位冲激函数,试求下列卷积,并画出波形图。
(1)f1(t)*f2(t)
(2)f1(t)*f3(t)
(3)f1(t)*f4(t)
(4)f1(t)*f2(t)*f2(t)
(5)f1(t)*[2f4(t)-f3(t-3)]
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image484.jpg?sign=1738985241-36mJTmUeLoG6btw080QCiKkcw8xnoRhy-0-e567d977c38876e0b33bc23a68188eec)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image485.jpg?sign=1738985241-efnYejDIKGq4BLQVXCl0bf2slH57comg-0-f48613133e6f419634250064b58e598e)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image486.jpg?sign=1738985241-R24mS6QJ0pw5A6yqy15ht5u6VU4eVEsp-0-e26d56dbe82102b1097c9c65f78f0c5a)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image487.jpg?sign=1738985241-j7J56wp3SqcgMwuMYWjzUiyQNvFdRITk-0-c040d0204fa1532fdf1c1f4279d29519)
图2-8
解:(1)f2(t)=δ(t+2)+δ(t-2)
根据卷积的性质
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image488.png?sign=1738985241-EpHzXHm7IFK3SIThjUKrf1639bQnZU5E-0-2b20f2bc95ee246ff7432cfa65d7c673)
f1(t)分别向左向右各平移2个单位后叠加,波形如图2-9(a)所示。
(2)f3(t)=δ(t+1)+δ(t-1)
根据卷积的性质
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image489.png?sign=1738985241-VlJx5WNGHaqWrjsgPZNhFeslcrwKNAUo-0-51ab078da86ab0dfe031b324968168ac)
f1(t)分别向左向右平移1个单位后叠加,波形如图2-9(b)所示。
(3)f4(t)=δ(t-2)-δ(t-3)+δ(t-4)
根据卷积的性质
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image490.png?sign=1738985241-6Ux6Xbm1Hj576ndYxwpy2xWSZiRePRm7-0-903d86a70ac92d922633991dcfe151c3)
f1(t)时移后叠加,波形如图2-9(c)所示。
(4)由(2)可知,
f1(t)时移后叠加,波形如图2-9(d)所示。
(5)根据已知波形
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image492.png?sign=1738985241-oKMoh8jTmakYEG5nGSf8Qa8JQ0nzExQH-0-9019fc9fd32b27c970b9d79d371ab67b)
所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image493.png?sign=1738985241-7IL6p6nY01fBbmxYKqBeUm6ttrHR2CzL-0-4714f849f3a349ffad4c9bb1ded6a0f5)
波形如图2-9(e)所示。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image494.jpg?sign=1738985241-wUfBINwa6cjDoGF4Tdf8xibtJ7JSQwUQ-0-fd7cfff858fd53279f70c18fde63da7a)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image495.jpg?sign=1738985241-68SkESSlTtrhmNkDUQNtKJyv2D8kJ7RB-0-c03f33a2f00db68be6726c8ddd70bcf6)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image496.jpg?sign=1738985241-U8BjB9l6nr4ddAuFOw6lWl1ksETfjj5Q-0-8776d5ebdd0d9b4cae156903cf27c46b)
图2-9
2.17求下列函数的卷积积分f1(t)*f2(t)。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image507.png?sign=1738985241-fuKKIJPPQrpOjhJ08GEqyGzzByS3Hjf5-0-05f5eddcde2b61cf141c143a943fa75d)
(2)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image508.png?sign=1738985241-NnzrLwdqPVwUkpBxd7nZe3K7X1jqhkU5-0-8b440c9073be282d31b19c1d2da7193d)
(3)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image509.png?sign=1738985241-nX67SGuG8cuTqVHHF5mPtfDJcIgm8G1f-0-a39d51f9ca972daba252be6317b5ecfc)
(4)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image510.png?sign=1738985241-LjHRmbkYLrci7apfR9OpckscMi0pryzI-0-279809e7c88d82837626a2b0f22ebb2e)
(5)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image511.png?sign=1738985241-XrLczBT3YYT4OIGy2cKwCLKgAtmG4Wm0-0-92e76f6331664add17d046d014e51f43)
(6)
根据卷积的迟延性,若f(t)=ε(t)*ε(t),则有f1(t)*f2(t)=f(t+2-3)=f(t-1);
因ε(t)*ε(t)=tε(t),故f1(t)*f2(t)=(t-1)ε(t-1)。
(7)设f(t)=ε(t)*sin(πt)ε(t),则
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image513.png?sign=1738985241-lCYMJpgbnf70IjiktH6ffXYa39y0Ftzz-0-5e0cdf12ff0d6540f1c61f0cf0943dac)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image514.png?sign=1738985241-u6P823IuNkaJTCVx2dTTz8QCrmZdRo2v-0-b5fe4a6575e9d91182b2f863db85ff95)
所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image515.png?sign=1738985241-m08fupkfC1zFmH0PhnpZ6rxfsZSLO9fO-0-98b31ce7e81479ec82a78590f0bd7f6a)
(8)设,则
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image517.png?sign=1738985241-3Ej3cVqsE7jn5eehoax6p0JYHyCslS1i-0-97cd97530d6b7959046bd27696a229ae)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image518.png?sign=1738985241-m3h5TSEpIhQRKEC6BzT9SPyE9G4NTyc9-0-56dbaa3dd10848b8b984e85bb840d9ca)
(9)设,则
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image520.png?sign=1738985241-CKnPAZvDcFz8vqe1JnpwgQWv3BMOqcPS-0-f820ee5c2bcccdbd544e52920bb16aa8)
根据卷积时移性质,有;
所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image522.png?sign=1738985241-ib55dpd5X7rFvyQylwoDUcaNfmwXyc6P-0-a5ac86eba1c03bf76c764727b500584b)
(10)设;
则
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image524.png?sign=1738985241-dtLR1nLD2yRjbKDEuiDsQEGC0bEqi2QW-0-cd80372486d7f73a8711f4921dafa07f)
根据卷积时移性,有;
所以。
2.18某LTI系统的冲激响应如图2-10(a)所示,求输入为下列函数时的零状态响应(或画出波形图)。
(1)输入为单位阶跃函数ε(t)。
(2)输入为f1(t),如图2-10(b)所示。
(3)输入为f2(t),如图2-10(c)所示。
(4)输入为f3(t),如图2-10(d)所示。
(5)输入为f2(-t+2)。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image527.jpg?sign=1738985241-8MHfiDzWH4pd7tb0R0DGAivLb381idJB-0-b4fdf6d68b497a4ce1382dfe8be8a429)
图2-10
解:由各波形图可得
h(t)=ε(t)-ε(t-2)
f1(t)=ε(t-2)-ε(t-3)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image528.png?sign=1738985241-WFoFy03649jny5hGyhToc5KJzmmSwx9w-0-bd66cf3b719a4b705fcea8d032ad1523)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image529.png?sign=1738985241-Auxqk1nem6OjNQ4Wuu3erjSn3rc8mEVO-0-5258cc67370a9b90e4d8ea3425dce935)
(1)当输入为单位阶跃函数时,系统的零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image530.png?sign=1738985241-QWTHTpTJ9qpBSyec0KDfWQkV6QW5BLqK-0-1ecd2322ca3d3a495786d307babb4076)
(2)当输入为f1(t)时,系统的零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image531.png?sign=1738985241-mQxRlLoOBU3JnXtlLQJhq2wRUAVoUqbP-0-a6fdf9802e4f509231f0f6a04a1ecdf9)
(3)当输入为f2(t)时,系统的零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image532.png?sign=1738985241-pdr50Kzru5xtaK2CA6C5U2KD8wwRiw1G-0-198343cf707b54906fb402e0acd58a70)
(4)当输入为f3(t)时,系统零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image533.png?sign=1738985241-U4gkJAMe4esAJJmAYgeWRiZURr9YcjsQ-0-cc0e40b9d76aa7e387c3011d71eecf7c)
(5)由输入波形可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image534.png?sign=1738985241-AlR6hLtyWNihqowgXp2GXu5FJg3VgotL-0-5ee9f20a00bbc78fc4a032e07117f8ea)
系统零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image535.png?sign=1738985241-4FwxDKT3TwUquPxo0gNNxYd06lCirNc4-0-9b2c0b020a9960855a9eb50674ca0347)
设
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image536.png?sign=1738985241-eLDszhp5ANcPRKJPWHk4WnNLWYkPySYy-0-45e16f6a6bd5cc4c997b05c4c65ea08f)
则
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image537.png?sign=1738985241-fSBA0O4BApyknN3e6Duk26hPgFIfa8Ta-0-9aa2cac496989a139bb60bf2ee938da6)
2.19试求下列LTI系统的零状态响应,并画出波形图。
(1)输入为f1(t),如图2-11(a)所示,。
(2)输入为f2(t),如图2-11(b)所示,。
(3)输入为f3(t),如图2-11(c)所示,。
(4)输入为f4(t),如图2-11(d)所示,。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image542.jpg?sign=1738985241-VzBnQAIWjbwUX3LqjxobysnhTj9ZATP3-0-c2b2b6b0c5c962636428e46144d6fdcd)
图2-11
解:(1)由图2-11(a)可知f1(t)=ε(t-1),零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image543.png?sign=1738985241-ERsFv4pJ2826sLrM3QZDkphol6lGBv51-0-1975ce3630810949e39f8907e57211b4)
设
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image544.png?sign=1738985241-dCnr6koqZrPakk2csoX4N3XuhDKv1Sez-0-6bd56bef1ca702843e4ec531acf9b5d3)
根据卷积的延时特性可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image545.png?sign=1738985241-5QhGlhNjlTsAUlUjG0v2ekG0iM966fWX-0-b585c71986b751c77a96db991aec8975)
波形如图2-12(a)所示。
(2)由图2-11(b)可知f2(t)=ε(t-1)+1,零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image546.png?sign=1738985241-pQjG25LxUAogUXTEnIbVl91ZpeWsmZx3-0-2e6821d424deed99a90d62868b30f7e0)
因为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image547.png?sign=1738985241-yP2gjxGXX5sEy4AZJgIReabLzyMHbdgR-0-0aab1af60dc7bb6957b1f810dcd0d98d)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image548.png?sign=1738985241-n4dPwH7HhQKXrqKDtvqR8YWNXma75UKE-0-afd7d9ee9b38af624aca4d9d77607b17)
所以。
波形如图2-12(b)所示。
(3)由图2-11(c)可知f3(t)=2[ε(t)-ε(t-1)],零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image550.png?sign=1738985241-ztzbjuswpOwfRQnpL04WxxF8uI2pVtAI-0-89485b15cf5796ef5495f8fed5ae1631)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image551.png?sign=1738985241-NdKvDckGASrlmz0FlxhTOfr9fgyl8TAt-0-a6169b22b2b30b59dc4f8c3e2c9d7669)
根据卷积的延迟特性可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image552.png?sign=1738985241-bKVO9dsJIWzacHaNUwQzjgKqNUNsAplv-0-af6909c9a9d6a084dd0bde5063f1a1f4)
波形如图2-12(c)所示。
(4)由图2-11(d)可知f4(t)=ε(t+1)-2ε(t)+ε(t-1),零状态响应为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image553.png?sign=1738985241-3Q7KeNhSU3Ui6vrDSRdtcjNlgbcTJZeH-0-0dbb8b8ff33ef4027610b4f52e7ff55d)
根据卷积的分配律和延迟特性可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image554.png?sign=1738985241-IArESLFuog1Nj30sUXmd7rX72MgoLRWX-0-80e2c1a403120bf24fd6cab3556ab0dd)
波形如图2-12(d)所示。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image555.jpg?sign=1738985241-5f1czmKFGL8t2E1R4wF9rITxyghiDU6C-0-cb38b9c17d8941f8b86f783489b72d0a)
图2-12
2.20已知,求
解:根据卷积的性质及冲激偶函数的特性可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image558.png?sign=1738985241-nsGMkTlSASQpdVSH2vkiLiA6BqfmfSMK-0-43b3b4dd1df4959b0cbd3926d2867ead)
2.21已知f(t)的波形如图2-13所示,求。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image560.jpg?sign=1738985241-H4kkI5tZjVTQa89UPedGY2qLmRjBSDJO-0-826e56b8f9faf600c8b91bd2c4378e9f)
图2-13
解:根据卷积的性质及冲激偶函数的特性可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image561.png?sign=1738985241-lAtONdXdkYSVGW1pZJjqey2nUqOoFakR-0-766b10bf6ac40a992e5631b2e0c68548)
根据图2-13可得:;
所以。
2.22某LTI系统,其输入f(t)与输出y(t)的关系为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image564.png?sign=1738985241-EJNnupk1P9fmYGwyUZc6YN7GIbADDK3b-0-caffc4f99454e915efd5420d98e3729a)
求该系统的冲激响应h(t)。
解:令f(t)=δ(t),则有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image565.png?sign=1738985241-v622yHUGa7IjexTGC1godfW6IbQgTWr1-0-0229e361afa12122ddbf48ec8fbb5b29)
由冲激函数的特性可知,只有t-3<0即t<3时,,否则为0,故有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image567.png?sign=1738985241-Q90ctDJGcP15cg3pxTCQ6u9YEaaqDoN8-0-c650ab7ccd6dce628ab19a0c0b846672)
所以。
2.23某LTI系统,其输入f(t)与输出y(t)由下列方程表示
y′(t)+3y(t)=f(t)*s(t)+2f(t)
式中,求该系统的冲激响应。
解:令,则有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image571.png?sign=1738985241-OtANPqRnudYAuNvMvSSpcawki8iFWegh-0-fc4e749226eee9aea7e803ccd0740777)
引入微分算子p,有
所以,即
。
2.24某LTI系统的冲激响应,当输入为f(t)时,其零状态响应
,求输入信号f(t)。
解:系统的零状态响应
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image577.png?sign=1738985241-OxhapXSY4zXJrBA7ypvKq8QLKSi1VA3s-0-a72328bebeb38e30f712717c5b8efce2)
又已知,所以;
;
可判断f(t)是因果信号,f(0-)=0;
由于方程右端不含冲激项,因此f(0+)+f(0-)=0;
微分方程的解为:;
代入初始值得:C=-1;
故输入信号:。
2.25某LTI系统的输入信号f(t)和其零状态响应yzs(t)的波形如图2-14所示。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image582.jpg?sign=1738985241-sBcYj4RPKTv4jaUqZGsmpmI6q7daefnh-0-968ab1669861ea31c604ab8c0711b4f1)
图2-14
(1)求该系统的冲激响应h(t)。
(2)用积分器、加法器和延时器(T=1)构成该系统。
解:(1)由图2-14可知,f(t)=δ(t)+δ(t-1)+δ(t-2);
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image583.png?sign=1738985241-84RfbJ2RqgT522lQZMv170CvCOGmOOAa-0-e1a5f358083008b0693d6d1126286044)
因为yzs(t)=h(t)*f(t);
所以
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image584.png?sign=1738985241-2qa6QZDbs55NEiZXFCb3A5sLS5NorGxe-0-d0e6ba6b0cdc9e7e122aae724e3e04a7)
h(t)为因果信号。
①当0<t<1时,h(t-1)=h(t-2)=0,所以。
②当1<t<2时,h(t-2)=0,h(t-1)=(t-1)[ε(t-1)-ε(t-2)],
所以,
则。
③当2<t<3时,,
,
所以,
则h(t)=0。
④当3<t<4时,,h(t-1)=0
所以h(t)=0。
⑤当t>4时,h(t-1)=0,h(t-2)=0,,所以h(t)=0。
综上所述
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image593.png?sign=1738985241-XpF5qm6EbbdlutRZouFJCNpVyI55qL7K-0-320332302a53c22eeaf2ad72c004af00)
(2)由(1)可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image594.png?sign=1738985241-JdZ4T53rjG5FFmEUiszmfB2x05l76gRz-0-9e705b80cd91bd97a52e258f4ff007a4)
系统框图如图2-15所示。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image595.jpg?sign=1738985241-RwZQ1HhcXWVYO0cv8w4STpnbkiiGDwDy-0-034cfac365766af10caa76ac727ec8d9)
图2-15
2.26试求图2-16所示系统的冲激响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image596.jpg?sign=1738985241-cttPLOYgLua6ENeezbTYl8wSNy4LIi9Y-0-8b346ba25f69fad496f4888d2ac7e1d2)
图2-16
解:由左边加法器可得:x′(t)=f(t)-x(t),即x′(t)+x(t)=f(t)。
由右边加法器可得:y(t)=2x′(t)-x(t),
等式两边取微分得:
两式相加得:
设h1(t)满足,则有:
。
故系统的冲激响应:。
2.27如图2-17所示的系统,试求当输入时,系统的零状态响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image603.jpg?sign=1738985241-14vScx64wYHxd5Q4ZmyRBTUzBtM0q9sL-0-2166fe93239c9866bc16b8b67402d011)
图2-17
解:由图2-17可得,左边积分器的输入为,右边积分器的输出为
。
列方程得:,
两边微分得:,
因为f(t)=ε(t)-ε(t-4π),所以零状态响应yzs满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image608.png?sign=1738985241-HPO9j0qZ8YfzWCIF8wJKMtJNpb98csGp-0-eb72657931254f26aebd05e2204bbc83)
设h1(t)满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image609.png?sign=1738985241-KGsMgbkm0fHlf9sHR9Flpb19TZ8EmPi4-0-7416990b3d70a8595e7524becbaee97d)
解得:h1(t)=sintε(t),
则零状态响应为:。
2.28如图2-18所示的系统,试求输入f(t)=ε(t)时,系统的零状态响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image611.jpg?sign=1738985241-flZ83iULd1WaKWHcLAnRSGxURmmR6sO7-0-d140d0fbb5a5ab9ab95a7e49facc2ea6)
图2-18
解:设右端积分器的输出为x(t),则积分器的输入分别为、
。
由左端加法器可得:,
由右端加法器可得:y(t)=2x′(t)+x(t),
设阶跃响应满足
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image616.png?sign=1738985241-7AehlgeYpX6lJecCJzifQ4iaxKreVxb6-0-729e76d90f08890f171421cfb2d0edd7)
微分方程解为:
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image617.png?sign=1738985241-yY5UFe9CradU4jjvaILIlUFjzl8Ej1mB-0-7d00445304a02f7f864579b02f82b29b)
代入初始值得:
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image618.png?sign=1738985241-31vCVBc91Yqvd4EVZRnD5cGrgkq7Zdub-0-a521b2936981258da30fbf624bdd0064)
系统的零状态响应:。
2.29如图2-19所示的系统,它由几个子系统组合而成,各子系统的冲激响应分别为
ha(t)=δ(t-1)
hb(t)=ε(t)-ε(t-3)
求复合系统的冲激响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image620.jpg?sign=1738985241-fv3C6Oe6qr21SGoMf2EGnVu3144drh75-0-f3cd16b7ba878c61636cc955043b1791)
图2-19
解:设输入为,则由系统框图可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image622.png?sign=1738985241-ouokVLnQNrPbBR9v0lpa7xUs4HLivFL9-0-30b84e5638f0fc7e50ecd95eb9d32918)
2.30如图2-20所示的系统,它由几个子系统所组成,各子系统的冲激响应分别为
h1(t)=ε(t) (积分器)
h2(t)=δ(t-1) (积分器)
h3(t)=-δ(t) (倒相器)
求复合系统的冲激响应。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image623.jpg?sign=1738985241-0NAbdwzX1ZXt2TigQ5diQgggIgaiQeJo-0-c5379babdde4592f90e92079155ec914)
图2-20
解:令,则加法器的两个输入分别为
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image625.png?sign=1738985241-W6Q2GP1TZSkity4o2abrPlKopcmJOtBn-0-37a1a3402c9c2ef0a13ff7a98c7878cc)
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image626.png?sign=1738985241-1JYhZ2H3JIgPhci0IouLo1ULagp7AfU8-0-31457308328e62bd9ed681ce1b3579cb)
所以复合系统的冲激响应为:
2.31求函数的自相关函数。
解:自相关函数
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image629.png?sign=1738985241-NCKLlAVhydhPNbG0IKNnT1lB23ZZz3La-0-ab5823900d8bdeb0d82d9052b9d79724)
分段讨论:
当τ<0时,有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image630.png?sign=1738985241-0KS79HgkRZxmM3oLf70hILlg2Oo3KIay-0-e02c4a3b682ec1fdde42db5f64bdfc41)
当τ>0时,有
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image631.png?sign=1738985241-I3IXE6QpQdt6CAPZfBC5jQoTb0Op8CIy-0-5fcee7c5998483e0e7583eb5d62549d3)
综上可知,。
2.32求函数的自相关函数。
解:自相关函数
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image634.png?sign=1738985241-YhzEJjuzAdf4I53xaz4HmIOraGnYcoX7-0-db96db52b9728cc0a81b0f1d7b75d800)
分段讨论:
当τ<-1或τ>1时,R(τ)=0;
当-1<τ<0时,;
当0<τ<1时,。
综上可知
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image637.png?sign=1738985241-kYieIuwYoCiPElbPHHczuDV6TTwMkGIJ-0-813395c062407dc58a300b293c4bfaee)
2.33函数f1(t)和f2(t)的波形如图2-21所示,求互相关函数R12(τ)和R21(τ)。
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image638.jpg?sign=1738985241-h1IqYgFsYhvThbCJ8VFiPMMt58BcskJ0-0-e7260651e518f3d592e8b2fb953e2f7b)
图2-21
解:互相关函数
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image639.png?sign=1738985241-wO66AowlowlKIWCZXriR2FgDxwyH9lBX-0-3f06282f7593699593e12aad63b05c25)
分段讨论:
当τ<-2或τ>1时,R12(τ)=0;
当-2<τ<-1时,;
当-1<τ<0时,;
当0<τ<1时,。
整理得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image643.png?sign=1738985241-VwmYrNUW4UxdOE9xGec7tNM0Cn3VLLaM-0-62ca420c0884d570c7e9575e0a0a6f1f)
由互相关函数的性质R21(τ)=R12(-τ),可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image644.png?sign=1738985241-taz6lhH7OYVaC23PhcWPyX8vppjW3aDn-0-3c436c4e2f354c603db1e53d0895a513)
2.34函数,求互相关函数R12(τ)和R21(τ)。
解:互相关函数
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image646.png?sign=1738985241-07QEucBFoXDgaPEaySFT1UtgiuX9GTwW-0-357638bfa236a74601385b9007c40ae5)
分段讨论:
当τ<0时,;
当τ>0时,。
整理得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image649.png?sign=1738985241-6Nd5a0DJRxWnBB8gG5F0ocVHxLGT4YXa-0-a7e4a1a5e548dac833cc2451ef37f095)
由互相关函数R21(τ)=R12(-τ),可得
![](https://epubservercos.yuewen.com/FCB703/15436658205567706/epubprivate/OEBPS/Images/image650.png?sign=1738985241-NwdeP3Hw9bj13VViPx83XKyyyeJHoezL-0-e15d34a7ebe1d996852c06142b3307e3)