![五年制高职数学(第二册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/608/31729608/b_31729608.jpg)
6.3 向量的数量积及其运算法则
本节重点知识:
1.向量的数量积.
2.向量数量积的坐标运算.
6.3.1 向量的数量积
在物理学中,一个物体在力的作用下,产生位移
,若
与
之间的夹角为θ,则
所作的功W是
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029017.jpg?sign=1739578271-dZsgzH974RLPgwPf2hwCASGFvUwKVYMN-0-91f158030af6dd7110ec1a8b12f8eb7e)
这里功W是一个数量,它由向量和
的模及其夹角余弦的乘积来确定.像这样由两个向量的模及其夹角余弦的乘积确定一个数量的情况,在其他一些问题中也会遇到,如物理学中的功率
等.
若将两个非零向量,
,设为
则把射线OA与射线OB所组成的不大于π的角称做
与
的夹角,记做
显然
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029027.jpg?sign=1739578271-jqOCaf7H0Z5nb90soSxovxtTrhzv7bwC-0-a879d75942350f2fd80116e00930be4d)
在数学中,我们将两个非零向量的模与它们的夹角θ的余弦的乘积定义为
与
的数量积(又称做内积),记做
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029031.jpg?sign=1739578271-1hViKc5pZWfUvszJLJX6OTjk2vUYJ4vF-0-00049f84160fcc7b6a3c50df051b3ff4)
其中θ表示
从而也可以表示成
注意 两个向量数量积的结果是一个实数,可能是正数,可能是负数,也可能是零.
想一想
如果 是两个非零向量,那么在什么条件下有以下结论:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030004.jpg?sign=1739578271-ZD8IaQ8rg5OPcYcB6xlVLZzBcYRmFkHL-0-9d4c478026ec27c0c7dcc6e68aa60498)
练一练
(1)如果 ,那么
_________;
(2)如果 ,那么
_________.
例1 根据下列条件分别求出
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030010.jpg?sign=1739578271-3k9u5dtg6sNCYHwefhr2wbeDTmk1whiY-0-2fb9031e66a75bf57920849e2ec96f44)
解 (1)因为
将已知条件代入,得
所以
又因为
所以
(2)因为
将已知条件代入,得
所以
又因为
所以
向量的数量积运算满足交换律和分配律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030021.jpg?sign=1739578271-V16GtLovtn9WVkq2NWHEHDkHoOwKJyzi-0-7a3e77f24e51b597722b06f52447e4c3)
但它不满足结合律,即
当实数与向量相乘时,满足结合律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031001.jpg?sign=1739578271-URv4cs0XNgmCZqWAopCpmhp45gTKpXUH-0-8b757ae43bb117ddaad6c1dda5f9f0b8)
例2 已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031003.jpg?sign=1739578271-OOxyvStkCfXOt06XGPCvZH9Bpc3Qe0bJ-0-4262d8911523cb5c0572fd1404c6299c)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031004.jpg?sign=1739578271-SHkwFxWlJamshsGsq2JHEEKFnAAb9nkt-0-8a688cd95987c98fe86eb659b4805895)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031005.jpg?sign=1739578271-HFmQjGdGMNlW19y4DknGg44dqXWuK0aG-0-87d261adbca731a26c772b6f13750cc6)
练习
1.已知分别是平面直角坐标系中x轴和y轴上的单位向量,分别计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031007.jpg?sign=1739578271-bkLzigWe45bLyRz5xYKFmiYLmBiPRtr5-0-bd80ee968c865c6a00e62dc03aae8d22)
2.根据下列条件,求:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031009.jpg?sign=1739578271-0muvnVbmTyRwn316bUmOJWr2SJczNqFe-0-d0f057c70f5f7451e716783ac6bac9ab)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031010.jpg?sign=1739578271-XhKm6avL1FZs0UyS7HPMf2EjLcLrma2Q-0-8850e2fb1c0a76043d2ff185ab5a5426)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031011.jpg?sign=1739578271-mqHyVMXOWt2Wn977WazpV9V2vZ7NDVuB-0-a39b89f2688ec8d302add433b14c5c77)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031012.jpg?sign=1739578271-7BR2VZAFlRoT66mmiAqvc57EJ0aEbHzT-0-ad8e9f563fe1f6f7babd6d2ed6bc1f65)
3.已知求
4.已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031016.jpg?sign=1739578271-FCANM85T3wmfCyj6pVxQ3qOmDbTicrxO-0-92551de10d6402a60d42fe4189745dd4)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031017.jpg?sign=1739578271-CO3C0g5JTjw9EkNyyAqogQzUZhs2Dy5U-0-b68caa07c4a0dac81c58f612edee079f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031018.jpg?sign=1739578271-JsWi1JkRa0kXqAc6p6B6yJoZaZLVDEvO-0-97530dd8bad33c5a017db74632478fe8)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031019.jpg?sign=1739578271-BC1ryWH79QZrZHfbG5MP1NXUkY6WTVSW-0-a70c4ceda2f6831be1d93d88560381d6)
6.3.2 向量数量积的坐标运算
设向量的坐标为(x1,y1),即
向量
的坐标为(x2,y2)即
则
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031026.jpg?sign=1739578271-qMMS0OetPiQeT3I0ebJ47uMqpBFqzp7V-0-0707ff54eca97a9bbc26dc3f5928dcab)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031027.jpg?sign=1739578271-Mev952CGzphATreoCkMaa3LXdzXWJS8y-0-f80ff34bc593c40071c7f6e71ec7585a)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031028.jpg?sign=1739578271-gT3xh53wBv9TBH1x5d33gS1NpachUHxr-0-9348fe7e9c4dacc108c090d52e7222b6)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032001.jpg?sign=1739578271-BFRc0YimAw6JNLH6siUP7maFjobT2G18-0-d0d8d3f009474c4266e85153723dc350)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032002.jpg?sign=1739578271-2fODj2yELYgpS3MgGOqvjI4oXWPJy5Bo-0-dd9531499fbd883378cfaca607cd580d)
所以
就是说,在直角坐标系中,两个向量的数量积等于它们的横坐标之积与纵坐标之积的和.
例1 已知求
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739578271-t4bQXYrfVrYe7G8QQ9rIQQCcEOpa0yFJ-0-9aa5d1261ff8679c427b9a1487a3da39)
当两个向量垂直时,夹角为,此时有
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032008.jpg?sign=1739578271-N8kFZUluucPpGjOfUjrvSjyyEXsWju5l-0-4d81095b76b6526be48e5e86c4f44186)
反之,若非零向量的数量积为0,即
则必然有cosθ=0,即
故有
如果则有
例2 判断下列各题中的向量与
是否垂直:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032017.jpg?sign=1739578271-AvCvCqNEHDiV9SizPcG2IUI50DO7hMT4-0-35b847a0b6a675f1c1e67029d1099883)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032018.jpg?sign=1739578271-DUWH7TEV0ojhWK560PLf1Q6x8QW9jcMQ-0-01ba53cabf9008b94affa58a98d3e7da)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032019.jpg?sign=1739578271-EPe566vT3Z1r19Ia8mGBnDIwFVLXrChP-0-e825e20f5e35ce8a0c6b6a6741857232)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032020.jpg?sign=1739578271-bPpuXN4GMXuZg5kuLEyzjBJTYe4xvjcv-0-e1a248902cf5b1bd941c2638c14707d1)
所以 与
不垂直.
如果那么
所以
就是说,利用向量坐标,我们可以计算出它的模.
练一练
算出下列各向量的模:
(1)若 ,则
(2)若 则
(3)若 则
如果点A坐标为(x1,y1),点B坐标为(x2,y2)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739578271-6cWUQsmFOUUB0Jgb3lV4GHLxVgPISrnY-0-0a64841f75540f6bcc2ce7f08d3f6a59)
于是向量的模
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739578271-y39qaj28a8zNaPQgO4bgKUycrYNVXEBE-0-9d0addd6421b35511af5db6ca159a89b)
由于的模就是点A和点B的距离,所以我们得到平面上两点间的距离公式
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739578271-b0nIZ9SsXyFQbV1RCksF5um66DA4WYFF-0-7470af65df3ee2824d20e515b573a503)
例3 已知A(8,-1),B(2,7),求.
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033007.jpg?sign=1739578271-rQBZFTBhloG1eKS2iQMcgsY3MmRjmDtO-0-d44a1b3ad72e6d561ca70fa092322afb)
例4 已知点A(-3,-7),B(-1,-1),C(2,-2),求证:△ABC是直角三角形.
分析 可以通过判断某两边互相垂直,证得△ABC是直角三角形;也可以利用勾股定理的逆定理证得结论.
证法1:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739578271-NFR1LiHCD1qFhJudUurFQlMMWrUAto7M-0-d51acdbc58186640b12ec62952b522d3)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739578271-wJAE8rPTorl6Y7fuQzPf4PZXFSsGJGTV-0-835e4c02a734d87377c0d1b955e558b6)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739578271-t9Yfh2RrC3jwQFPZfT6BUakft4r7KUFc-0-e7bad51724bd20e361fbbbda161f5e5b)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739578271-NSLkIcLQqRVORnqKtYuarSJ6L0afnUX2-0-5bec0f7e7742fe999642830786a35533)
即∠ABC=90°.所以△ABC是直角三角形.
证法2:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033012.jpg?sign=1739578271-EGEuohczkCdU5yojuRcx0jFINcO7tSBZ-0-92b6ff23c0e811fe15b12603d5fe5627)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033013.jpg?sign=1739578271-1tVGRFpfd2Zi4EbgvV5oAY0oTMyhqWe4-0-879e6716c117d0d4728ab304773ca341)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033014.jpg?sign=1739578271-M2BPHp22eT7AcXJM8QhfxdS5p7j4g0sb-0-e95d62f305e7152016d4f7b53fcf209e)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033015.jpg?sign=1739578271-au4ZZLZj3J9klegwmlYcLdsHPnkTE8TG-0-b90f8d9f506861a7f61fe8e74ed5c820)
即 CA2=AB2+BC2.所以△ABC是直角三角形.
练习
1.求的值,当:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033018.jpg?sign=1739578271-zrSvWK8ABYkp72LdSjMWHnS4pe67P2nZ-0-622dd2a912b9bc95f8bfaa400c6fb62f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033019.jpg?sign=1739578271-wtLcXTPoisSsEA3BrTUooI6sSyVSES8a-0-e510870d7a13da98d4cf93d507b007a0)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033020.jpg?sign=1739578271-GjtSq0vvtXwu6bJx4emHuFhB6FV8H2vW-0-d58482e7708b7ba030f521929bb15419)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033021.jpg?sign=1739578271-dMJzKw9SyNZtSMfY5G89jj4qRqd00tIZ-0-9d4a6d7c7607fdce64422bb0c9250d51)
2.已知M(6,4),N(1,-8),求
3.已知A(-4,7),B(5,-5),求