
Deep learning frameworks for R
There are a number of R packages available for neural networks, but few options for deep learning. When the first edition of this book came out, it used the deep learning functions in h2o (https://www.h2o.ai/). This is an excellent, general machine learning framework written in Java, and has an API that allows you to use it from R. I recommend you look at it, especially for large datasets. However, most deep learning practitioners had a preference preferred other deep learning libraries, such as TensorFlow, CNTK, and MXNet, which were not supported in R when the first edition of this book was written. Today, there is a good choice of deep learning libraries that are supported in R—MXNet and Keras. Keras is actually a frontend abstraction for other deep learning libraries, and can use TensorFlow in the background. We will use MXNet, Keras, and TensorFlow in this book.