
Preparing to Train a Predictive Model
Here, we will cover the preparation required to train a predictive model. Although not as technically glamorous as training the models themselves, this step should not be taken lightly. It's very important to ensure you have a good plan before proceeding with the details of building and training a reliable model. Furthermore, once you've decided on the right plan, there are technical steps in preparing the data for modeling that should not be overlooked.
Also, keep in mind that Jupyter Notebooks are particularly well-suited for this step, as we can use them to document our plan, for example, by writing rough notes about the data or a list of models we are interested in training. Before starting to train models, it's good practice to even take this a step further and write out a well-structured plan to follow. Not only will this help you stay on track as you build and test the models, but it will allow others to understand what you're doing when they see your work.
After discussing the preparation, we will also cover another step in preparing to train the predictive model, which is cleaning the dataset. This is another thing that Jupyter Notebooks are well-suited for, as they offer an ideal testing ground for performing dataset transformations and keeping track of the exact changes. The data transformations required for cleaning raw data can quickly become intricate and convoluted; therefore, it's important to keep track of your work. As discussed in the first chapter, tools other than Jupyter Notebooks just don't offer very good options for doing this efficiently.