![多传感器数据智能融合理论与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/842/41309842/b_41309842.jpg)
2.3 多传感器数据融合中的卡尔曼滤波理论
2.3.1 卡尔曼滤波简介
针对传感器信息的跟踪滤波算法,大多数工程技术人员会选用卡尔曼滤波算法。卡尔曼滤波算法是R.E.Kalman在1960年发表的一篇著名论文中所阐述的一种递归解算法。该算法在解决离散数据的线性滤波问题方面有着广泛的应用,特别是随着计算机技术的发展,给卡尔曼滤波提供了广泛的研究空间。卡尔曼滤波器是由一组数学方程所构成,它以最小化均方根的方式,来获得系统的状态估计值。滤波器可以依据过去状态变量的数值,对当前的状态值进行滤波估计,对未来值进行预测估计。
一个离散的线性状态方程和观测方程如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_01.jpg?sign=1739581063-mzfBxTTnvEuzRkGNUZcbOGZwQzSQkFqU-0-24872ec221112c510f8cce6d79d5b341)
其中,X(k)为状态向量,Y(k)为观测向量;W(k)为状态噪声,或称为系统噪声;V(k)为观测噪声。假定W(k)和V(k)为互不相关的白噪声序列,分别符合N(0,Q)和N(0,R)的正态分布。
系统噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_02.jpg?sign=1739581063-3X8SVdkEAixLpkecVcGHeJkdrGlu3lcL-0-b38e8f85f42e62c80e897545db60451d)
观测噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_03.jpg?sign=1739581063-DeoAXQXw5AhqR1rS4VTpYmkzsPn2TtaT-0-b3eb76590fc3a77ce0bc7695f9ffa8de)
卡尔曼滤波器就是在已知观测序列{Y(0),Y(1),…,Y(k)}的前提条件下,要求解X(k)的估计值,使得后验误差估计的协方差矩阵P(k/k)最小。其中
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_04.jpg?sign=1739581063-avv70Q8fmPsGb7G2RK6h6G8TGxLk4lRQ-0-1aa09e297610a1003c3d1ef82d87266e)
在式(2.5)中,e(k/k)为后验误差估计,它可以由下式求得:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_05.jpg?sign=1739581063-bWuFj4BkQKzYXbytlgTOfIXscKA6LvjN-0-46b2bbfd2aeb43917c0a44ca8ec8d53a)
定义先验误差估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_06.jpg?sign=1739581063-jkO82cgmvTAbtzhMFDDMGuJEYwjc7OXB-0-26b2f4e5fbf50ca782178809c19bbcec)
可以得到先验误差估计的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_07.jpg?sign=1739581063-Pq95PsHc4pzV8JXh34TYo8tGgJ3uSteW-0-49e7804f08b6d1196f5105e57042fd4f)
假定卡尔曼滤波的后验估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_08.jpg?sign=1739581063-mfmBvPteKdO0B7qGJ4qMa99JyZ4INSIz-0-37425933e0d597fcfaf79218fcd18a81)
将式(2.9)代入到式(2.6)中,得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_09.jpg?sign=1739581063-oytmv7pJSCjb30rTZeDvsXynmZ14j7aQ-0-608f22ef3d79025afb91cc8d4543186a)
将式(2.10)代入到式(2.5),可得
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_10.jpg?sign=1739581063-FBoqbUsQe0An0cU5f4KaEHl9Y2zjRa2C-0-cb21675a7e18f7cc708644304243edda)
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_01.jpg?sign=1739581063-zmaUwlSxzwsQAAh68uSx9OtwzqamkJR9-0-e2fc0db69697f3606617e34883ffbca8)
假设:随机信号W(k)与V(k)与已知的观测序列{Y(0),Y(1),…,Y(k)}是正交的,则有E[W(k-1)Y(k-1)]=0,E[V(k-1)Y(k-1)]=0。
式(2.11)可以化简为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_02.jpg?sign=1739581063-L15zZjKELrV0EVH0I1qmpMDDyB6sVWqF-0-1969c5df19b22ced4a8816d0cb11eaf7)
对式(2.12)求导,并令其为零,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_03.jpg?sign=1739581063-HYfmQsCY0E6ssJybEJJYfRSdYR0f19FW-0-44aa89cc375044bbaec8ba9dbb69d096)
同理,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_04.jpg?sign=1739581063-gZkmCEzi7thfZlUVrKtW95PpgWlfErr5-0-3a67b475ff91d5692674612e5a7518f9)
因此,可以得到状态估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_05.jpg?sign=1739581063-RNBaGlIzjEbXDGypQZdXmjEJjARXU7Jp-0-7b644b0ac6720a16c226c31811b24cab)
状态预测估计为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_06.jpg?sign=1739581063-43N400djBktAMDxDtU7tzayekgr5Uh8p-0-0796a9fb9255d8f204f7f7ec039265c9)
进一步计算得出误差的协方差矩阵如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_07.jpg?sign=1739581063-duKROMd0ZbR7wA8kAn8xXLuLPg8Ms05q-0-22c974deadb97d2af4c16d13e91017f6)
由此可以获得卡尔曼滤波的递推公式如图2.7所示。
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_08.jpg?sign=1739581063-VnWytu0XO2SrgZVBgWX0cxTG8yjzCkk1-0-198c0fced50d412287a5e2e81bfab592)
图2.7 卡尔曼滤波的递推公式