
前言
当今,人工智能又一次进入蓬勃发展的黄金时期。人工智能技术在各个领域均取得了重大的突破。无论是计算机视觉、语音识别还是自然语言处理,人工智能技术一次又一次给人们带来惊喜。特别是神经网络的发展,使得深度学习技术成为人工智能发展里程碑式的技术变革。
然而深度学习知识本身具备一定难度,学习者不仅需要具备一定的Python语言的编程能力,同时还需要具备一定的机器学习的基础知识,这使得多数初学者都会望而生畏。
为了减少初学者的压力,激发其学习兴趣,本书从人工智能导论入手,介绍人工智能的起源及发展历程,使读者在了解人工智能、机器学习、深度学习三者之间的关系后,从学习机器学习基础开始,逐步深入到深度学习知识体系。
本书主要分为五大部分,主要内容如下。
第一部分(第1、2章)为人工智能导论及环境搭建。该部分主要介绍人工智能发展历程,详细介绍深度学习的发展和应用情况,并讲解如何配置深度学习的开发环境。
第二部分(第3章)为机器学习基础。该部分主要讲解机器学习的基本思想、算法分类,重点讲解回归和分类算法的原理,以及损失函数、梯度下降等机器学习中涉及的重要概念。
第三部分(第4~7章)为深度学习基础及神经网络。该部分从基础的神经网络结构开始,介绍神经元、感知机、全连接神经网络;讲解从输入层到输出层的计算方法及激活函数的意义;深入剖析反向传播的原理;最终利用神经网络在经典的MNIST数据集上进行模型训练、预测及模型评估。
第四部分(第8、9章)为卷积神经网络。该部分着重讲解卷积神经网络,将卷积神经网络和全连接神经网络进行对比,最终通过复现经典的 LeNet 卷积神经网络完成图像分类任务;结合实例介绍几种经典的卷积神经网络,如AlexNet、VGG、GoogLeNet、DenseNet等,并介绍这些网络各自的特性。
第五部分(第10章)为循环神经网络。该部分介绍处理时序的循环神经网络,同时介绍它的变体算法,并且利用其解决案例分类问题。
为了使读者更好地学习深度学习的相关知识,本书以理解神经网络的算法原理、掌握神经网络基础模型搭建为目标,通过Keras框架训练深度学习模型,采用从理论到实践的方法讲解深度学习的相关技术。本书特色具体介绍如下。
(1)从机器学习基础理论讲起,尽可能降低深度学习理论体系的学习门槛。
(2)对深度学习经典的算法进行理论性的剖析和公式推导,使读者能够尽可能地理解算法本身的原理。
(3)利用Keras框架实现模型训练,该框架快捷方便、易于上手,使读者在理解深度学习知识原理的同时,又能轻松实现算法模型。
在学习本书的过程中,建议读者以理论与实践相结合的方式进行探索,多尝试、多动手,通过实际操作更加深入地理解深度学习的相关知识。
由于编者水平有限,书中难免存在欠妥之处。因此,编者由衷希望广大读者和专家学者能够拨冗提出宝贵的修改建议。
北大青鸟研究院
2021年冬于北京