![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1738904561-k9wCoOEHOjbrYLf6Rq3dEuAztrshXQFH-0-4477dc926b881c0896715c5d52d4a9a4)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1738904561-7m1bTwOouwEd3YHEqIY2djiZZIBToBmM-0-1c50264405c433cc22cb8e504a81ffb0)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1738904561-wm1exJKlJXOitthkiUW28Dgx4p6HKdyX-0-0950e89a5f63e71b7aa3976feebc421f)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1738904561-whPNdVHcvdGh8kAlQEAwQ0H8hKXopY8A-0-d15aa4e3d3bdead73e9a4cc94d41b2c3)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1738904561-hLbZK29Z6L4VZNa0tXepaWi2aWRGkyeT-0-23fbff6ab8e680c351af40b4c3273a33)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1738904561-A7c0rmRV7Ip3OtA1n92kgQqiWWQi6fUM-0-316472fb242fa7b4a6606d21e3deb0b5)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1738904561-XUr80mx9TFOzxgdTx44sKf3RMtDzuNaL-0-882d8637f70f6abf31fd6128c913f326)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1738904561-eWlChKSRHj7kEKs3Cq4tExGveGrHovxN-0-8c827271e4d80150ab0114ac3be8190e)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1738904561-dIJjPwCeTsXP4scwVqDBt5Xt1CmyIRaT-0-1beb3c52518a6b3af987b43668a2fde4)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1738904561-TCnPeR3RgbEYlrDbyavQcO0rkdrZ10uA-0-42c7b2b85f4b06acd77d6d070fce9f06)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1738904561-yMHU5NAZMxzxlIqrMOqGA5V5Hg2JszGv-0-a363f4f44c5a692c40f1c0df07d2cc40)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1738904561-0hqDkzVNx2EfViK7AxXZDvCjfEgIcoL1-0-0cf924ede5d6d243ca184428bd1cdd11)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1738904561-ei4eQlDxoQfCVUeA8eRYfLH6HaXOvy53-0-93086710f1c96a393102c1269b0a6a5b)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1738904561-GxL4i8IqbYxNglEfyaL030dUmaX1XaX9-0-668c2f27db432e610179279a400bdc4c)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1738904561-xJxJ9J9zMt4AaF9TQ3IieXk5ahKi1IaF-0-bceae4834c12528f6f51038e646e67e8)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1738904561-IlSysLdUSQIpXkNtuOUIOtWNrSHraa3i-0-ab9ca6d820625f247a8e665d592c2d60)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1738904561-aq95HtcJ54c7rSy0i2WnnqqxjhIPnODG-0-e825fde11ff69a1469a14c90ef1e3c3a)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1738904561-gq7TXWERdSrceke7N4qQwfEftcqFZ8e2-0-b0011c865136327b0dc72d271cfa2c07)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1738904561-ntdfQtSAZN9aSSgorqZWRwlWzX3cz3tb-0-20e000e17a1822c57b9ad730b2343a91)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1738904561-CVef9bSNEurUXciPT5L6G8zzteP72Cu8-0-d238e22479e324473c3c59fca93dcc2d)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1738904561-qlEj4u4U9EqeBFvrsF05GcuhVuC0AY2S-0-2edf633c83b1d41767b11e43d809f9d9)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1738904561-qXcM6sngoW8Y4UJeu761nKP7ojN5RGls-0-cb97825aac861672353ea49807168d8c)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1738904561-RFk7BgseNzLyJIOwrkvE6hEeNjjuCcSb-0-81de180b9d1f673bbe4973f9506d4b90)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1738904561-ZeRvMA9JHoFWW4uCxUntmBA1fCUj5hSO-0-08293e525025aab5874170ec08c4d66a)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1738904561-7bDqrgur4jAmOwHq9PjcxekPghdgwGzL-0-9eccbf0b8539d7165b5f8c85d9e304e6)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1738904561-RRnsphUhA09gXrMglgmCydIhBDXCtlrN-0-461f0fce01c15031eaa52e0f40fe0165)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1738904561-yDgbBuaNWPOEVi2ixiMKKMQQ8PZjbTOD-0-ac92365030016a7af40eee5ebed2137a)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1738904561-haZgDfHizLTR2K70QJHOKigfNDyhAKPc-0-19e5a259a1b14b68462973364ca51b21)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1738904561-X13SfYKrwmgyCgnJcnJo3q63IdOWPAEF-0-27d7625f9b86811209a2cff0f46184b7)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1738904561-HKEKbawuPhjvsk4UCbDWzQrW9xRV2wDV-0-37cab044dec69941ce3c50f165dae6c9)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1738904561-YeMcV9ApuPAqse0pFd4FiUCC3eFYhqDF-0-25012c64e0d16522b97f61b6cc38a618)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1738904561-YaU9avBLcTyaswbKjORjjyv2cQPh6f99-0-0ac4d034851ccde3933336e4c8b3b636)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1738904561-qs5AUj1CDvRDggYDVzwHcmcL55pjpVgi-0-289385a82b94b632040d0860ec971155)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1738904561-sbvMkNwlyNRNFyPWbfwYF3eSPvBZIMAr-0-8d6eb9727853c69a01e59b3266866e1d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1738904561-0up9agMYrurtmz1tmn4V9EAynKROmtD1-0-d458a03b385d941eda9c51be170b1e1c)
上式式表明相空间一个体积元h3相当于有一个量子态.