![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739322955-WGjsBb9fuxbpgPV0s81r0hUozh57G3qw-0-0ce9c7be12105eedff3510c0a0e4a000)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739322955-L2JxRUN6kBGEIeFtGmZvOa7wOIxYonED-0-2ac835e830a9fea4f9f430c4965ac44b)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739322955-qUln0zpBeG0AU0v4XbeKdIxq746NJVUD-0-d81c42bd0dfe395dd145805cd5bb02c0)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739322955-jprpLSiM0isMVz9lMkRxQFDGM3o3noAE-0-468c6b06e5900e85369eabe981304a1c)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739322955-T362KNOXLZ095o73zt4jDIy95K8zOg9l-0-3fc72348619143d86febfd527f55adda)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739322955-uUBw4C28JcdEyeUymTxnHVwHKXxEUgxN-0-b6fb7116a13d3b8b96e4b1d52f166946)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739322955-eDH85Bb8jDzS0OQDwuYFQryzFdCdE6k2-0-8a97e2afac122222a37eedbb7bf48045)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739322955-cVvUPCZhtkzbhzsbq7V1jOpw7mltcnAB-0-856f16dedd616bc1c172768424b02125)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739322955-TjznloR92z3BGhy12NZyYh6CcpCXG6qY-0-1632c9d237471127f2447a445a473e4f)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739322955-XnAOC89oPhDDnKLa5xUPK8XNDShiKkWT-0-1325298dec7a548719ca7b22f4d640ec)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739322955-HSvEOJOjCEsOBm0fHTm6Kp74Kxr4z8R5-0-e3ab3dedc4d8665e46a2d3b54b734af7)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739322955-0niCselHpSEz5UC1QRmRhOWyembRwimO-0-33e2dd3a0bc607df0f0db0d61a2e6af7)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739322955-bMz0MAT9RTrdqYdScj70twew7seFxExN-0-a69de7b49e92f069a3c63716705f7d12)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739322955-D2j2xFfDsMhEyRqtW630oqlpEbOORibK-0-7c3c8fd9909339eff6bf4f40f5791745)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739322955-c4QmWfbMaWaynBc9bzzEdUOIhTldGMhJ-0-9759a437c9371328e064ab2714750e32)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739322955-NjaLOGc3Z5Cf2sMFhb7yDZz4enaQyb8L-0-1c5e9f8792cbfa5ea07a3ccd1bdff569)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739322955-CNHTBw8B4vXPD0lkd2eTmMylHC6xicM0-0-91149c87a84eefb2dc7c4d6dcaeb7b4e)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739322955-UpMnyKQ3bD7uhEHwXceQIjaYcXmUsL05-0-d91c53c33314d4201b75a9ab4960a641)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739322955-FT1HxBZ16icOgTOdGDhzI7cew4EsMeRV-0-d79a9b97c5b810c8169f1633d7689f95)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739322955-hqoVpA0oew7jOSta44GzIn0ZExw6qCmk-0-c7cc66107f1a70778a7f1a64cef49e5c)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739322955-TS94VrMBHPeti1FLLwENFMQhQjX3kowQ-0-2ddaddb6b67b277d04db4944eab98d89)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739322955-PIbtq3SUQ2q4ssx6BRls3PGSjk9onVTS-0-614ec6656218732f5ae14216739f2c5f)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739322955-aVIaksbRZ9lZBfBJgGjREMbgkzByePCZ-0-1a5858fbb876414213a02212e67e73ed)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739322955-P73iaRStFlB6j5VWJF52HlBYeB4zJ0Kb-0-5852d26733d548bfed42797b3a10e699)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739322955-3Co3OKT0Yu8FK7uIsbhHkHB7siHYLAtj-0-c2b392748639b21eeb6fd358e8412da6)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739322955-H48xIO4LF2CsRNOhOK6nBk71BZjSUB1e-0-f0676252cb768166f3b93881ded7b6c9)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739322955-SMPqetwSdviQLxtr2fsPMJajnqGSRJNv-0-6c574b6f7ed412dbee2cd3bd37c35e96)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739322955-NSjfhhVZS4wrwG8q7PixF0QZFRYafvW4-0-d2fd168aa0e24774291688874bb66ec6)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739322955-HVNHIbDJiYMYExBvcAbdJRmIR380VDdC-0-bcb10ff3a67e671de728147ff014dc21)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739322955-6lF07LY5bZd9KJZ3WgBqlZZg9c1FmddX-0-b12adf31c0e4b0db11b5ecbe4286a5b2)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739322955-NyX050crJKVYneVtQJ9FyigeX06GZKHl-0-bae0266675e94d6e461312be5c046848)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739322955-Sgr1PmHvclILvIBjas1ltjGZjr5vaCS4-0-390ed91498d2413fc621a284b84b3aa8)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739322955-3PMyH8SLxpVvfY5iDc5rTXthDmehHJS0-0-d628045323755d7b6a6515456c324452)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739322955-SnPJUJPEjtzgJjdpnjEhcF2uUks22cCc-0-66544e66789d5b263a56622caccf1e07)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739322955-pwgDHfKlcAKSDse0EVEbZr0c7vl5J7X5-0-2db08d6ba34179238749bfadc5a18d56)
上式式表明相空间一个体积元h3相当于有一个量子态.