![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
3.2 课后习题详解
3.1 设A与B为厄米算符,则和
也是厄米算符,由此证明:任何一个算符F均可分解为
F+与F-均为厄米算符.
证明:因为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image676.jpg?sign=1738904153-bTDmkbI8le3sHxI4H2aej4LUS1cHwR1o-0-9ede06641a519ce267c301f9491b3361)
即和
均为厄米算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image679.jpg?sign=1738904153-fe0qu6LqRTSkCVPh8DnTXw0cTkzrwVKy-0-67ab07ab614110fde9e70ba55556dfbe)
而F+与F-显然均为厄米算符.
3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.
解:对于l=r×P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image681.jpg?sign=1738904153-v9gadmFfOtLHWsRHpCP3E2CUaPH6BWLX-0-df4cf0aeddf00cb9e3b331fab66ccfbd)
同理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image682.jpg?sign=1738904153-WHel2jCXub9FSMPf1DAg3BaIUyKHlfUH-0-78de58d570cc96d19b5ee6bd334fe293)
所以是厄米算符,
对于r·P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image684.jpg?sign=1738904153-NBhGcLvnefSUIBRGSgS47TnmasmKubmj-0-f416df769b00e1e62e083b15e80f959f)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image685.jpg?sign=1738904153-tnlS9CwCTBd7fDQLGzPZp6Y00xsxAE4E-0-1cc97333b390663b2222c88e922ec9f1)
所以r·P不是厄米算符,而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image686.jpg?sign=1738904153-LgZrsL33PbKdFAY2d125r5TE6XnYhgBo-0-af37a12e18022fcd89511738c0fcad4f)
相应的厄米算符为
类似有,本身非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image689.jpg?sign=1738904153-imytqhHRR9EFQHQeHmHqpj7P5aodvXEt-0-9fe009e98b864488ebc4deed7ccb1298)
,本身也非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image691.jpg?sign=1738904153-CMCDbT10xdTwHrEtbc3KFzpzHLZ2Qc8b-0-10a091278cad156c096db7a982c48cc7)
3.3 设F(x,p)是x和p的整函数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image692.jpg?sign=1738904153-MRV710qSEL532gijk0Hg9uaUheCvzwPV-0-42cb4a4e5b9bff6a5e93664b7af64505)
整函数是指F(x,p)可以展开成.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image694.jpg?sign=1738904153-FCNgHPMhGdhYnYoMgaIXh4foCznx08XE-0-acd40b4e2a8b69f0023f17aef2c58256)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image695.jpg?sign=1738904153-vxFHFTfagWYmKDu1N0XyNAnIpvhkP2zh-0-17fb94ef33ba237b156d0dad99145492)
类似可证明
3.4 定义反对易式,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image698.jpg?sign=1738904153-hh20q9JtpW7SHRTkvpiwQ1c5wlMjkrIP-0-788603c9d80e0e01e6dec6d148dcb32b)
证明:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image699.jpg?sign=1738904153-8DfOlLFePXPDp686RrXwxTWzORYuJcsC-0-7797c2ca00181e84a454cc2321c70659)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image700.jpg?sign=1738904153-eYE8yuMhpFtJbvtLsbrob4Oc4VNgu3nx-0-c20dd672759505b78457c7559b1d0dc5)
类似
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image701.jpg?sign=1738904153-3bVO2BNPBN1kuet9PhnaCPgToDocQzfq-0-af91441963d4ab6af69917b4b353ba60)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image702.jpg?sign=1738904153-hLEj8FLSH7bdruBJAjdb571pqBcA2wFN-0-888bcfc116b8fbed7c60726bd8e4a501)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image703.jpg?sign=1738904153-gvZlmgbWI9hXo4LzAPrOigwKZu3qJZP7-0-9920539dce0d208c76a8665e735b7de4)
3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image704.jpg?sign=1738904153-JbSXHr1pp43FCpMaqArMNptLtmgBl8jL-0-f089b2d1685f168812f2446ec8702432)
α、β、γ分别取为为Levi-Civita符号,试验证
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image706.jpg?sign=1738904153-ezIU5ywNdJwmLlK9bxiYqQcMQOySuWsY-0-7d201f86d54fc5430f64bcc629935e97)
【证明见《量子力学习题精选与剖析》[上],4.1题】
4.1 设A、B、C为矢量算符,其直角坐标系分量为
A=(Ax,Ay,Az)=(A1,A2,A3)
等等,A、B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image707.jpg?sign=1738904153-AezkmgKLs6RgERlY2Gay7n9jz4OnI2wk-0-9d9412d4dd2686853c1f65fe150383a6)
等等,试验证下列各式:
A·(B×C)=(A×B)·C (3)
[A×(B×C)]α=A·(BαF)-(A·B)Cα (4)
[(A×B)×C]α=A·(BαC)-Aα(B·C) (5)
证明:式(3)左端写成分量形式,为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image708.jpg?sign=1738904153-mJ19tMiczO4rMrRbJqLatcJsiiJSAyxA-0-efa98ffacb255677fc78aa1e2e564d96)
其中εαβγ为Levi—CiVita符号,即
ε123=ε231=ε312=1
ε132=ε213=ε321=-1 (6)
εαβγ=α、β、γ中有两个或三个相同
式(3)右端也可化成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image709.jpg?sign=1738904153-FjTlb2B9qqVCpZU0jpWBPszXmCVb3GZI-0-07425f3c1c1005b27ae82e014cef5366)
故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image710.jpg?sign=1738904153-NrDh4J2wDNW1tP0zD17mDrhKmcmIi2CX-0-4fd8a27dae0e41a07c6f4529b589e467)
验证式(4),以第一分量为例,左端为
[A×(B×C)]1=A2(B×C)3 A3(B×C)2
=A2(B1C2-B2C1)-A3(B3C1-B1C3)
=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)
而式(4)右端第一分量为
A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1
=A2B1C2+A3B1C3-(A2B2+A3B3)C1
和式(8)相等,故式(4)成立.
同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image711.jpg?sign=1738904153-mzkAbbeX4sVTptGsYQxyodwZi4tLhd9v-0-99a7a7e55c2ee25ecf722250a11ca4e6)
A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成
A×(B×C)=(A·C)B-(A·B)C
(A×B)×C=(A·C)B-A(B·C)
这正是经典物理中的三重矢积公式.
3.6 设A与B为矢量算符,F为标量算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image712.jpg?sign=1738904153-rX4jg7VwnllNv2DwLw0HiEM7SLzYkPge-0-6c6214591eccea26c2d63889416db88b)
【证明见《量子力学习题精选与剖析》[上],4.2题】
4.2 设A、B为矢量算符,F为标量算符,证明
[F,A·B]=[F,A]·B+A·[F,B] (1)
[F,A×B]=[F,A]×B+A×[F,B] (2)
证明:式(1)右端等于
(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B]
这正是式(1)左端,故式(1)成立.同样可以证明式(2).
3.7 设F是由r与p的整函数算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image713.jpg?sign=1738904153-akIn5UOL7ppvq5w5pR0VH3qfAuvwfuB9-0-f382cc6cf35e8fdd77728aaefd601a58)
【证明见《量子力学习题精选与剖析》[上],4.3题】
4.3 以,r、表示位置和动量算符,
为轨道角动量算符,
为由r、
构成的标量算符.证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image719.jpg?sign=1738904153-XKKgngSagZsuQDJkWMuBXQ07WWAtbTOj-0-eee0552f96d4b6d5b90f46876a206ce9)
证明:利用对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image720.jpg?sign=1738904153-lbuz8cdt0yfQf9bspsELsA8jer6i5ONy-0-160ec4d98d28a9c9931f1e74e4a6f1b4)
以及题4.2式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image721.jpg?sign=1738904153-tuueT6Jd97UBMVQuXVnqorgQ30ugmy4g-0-8a57b0271f66995795fc81977f7f4f5c)
此即式(1)。
3.8 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image722.jpg?sign=1738904153-4am7LrfRr8ae1PWaGO1x6GoQFp55eeEp-0-ac588ea2e001fb5e8a323c88c39254ce)
【证明见《量子力学习题精选与剖析》[上],4.6题】
4.6 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image723.jpg?sign=1738904153-eKXGG6BdV0OF9KawByRIXq8lNnC8G6Yk-0-b94f47aea683100dfd77e18bbc01e132)
证明:
(P×l+l×p)x=pylz-pzly+lypz-lzpy,
=[Py,lz]+[ly,pz]
利用基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image724.jpg?sign=1738904153-07eZTNwKobSkH3ypEwSPA0zRaRnabfkd-0-02c65a3a74fe11c7866e03e70d15187f)
即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image725.jpg?sign=1738904153-7xtljWf2wGnI7lVnJn7Px01gQlzhzCNg-0-ebf4be5a362bf157d0ba98193a35df42)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image726.jpg?sign=1738904153-DyCSypkrNACyVSkvzGTSUtCfcVEYaeju-0-459e257cacaa6581a0a34face935d972)
其次,由于px和lx对易,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image727.jpg?sign=1738904153-Y7v5MbopIukSb2yPpnUHAT0kPoTx7glk-0-457c6920227d9a8c200864b0a4ef1a03)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image728.jpg?sign=1738904153-IYblDGgeclZIkJZToQ1hXXA7byI6ivxi-0-1ad18b9e8cf4e3ac31122eabdd34d6c6)
3.9 计算
解:利用代数恒等式可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image731.jpg?sign=1738904153-1Gp9LcBTR4o88XNzXzc07Zm5b886bV7w-0-db3295b08f2a05b40eefc6690c869025)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image732.jpg?sign=1738904153-nP6bWKMKUrJaUXKMrqZI3tsY1b7Xz5QF-0-c77be1b51dcc61dbe19ecb0c83fde861)
3.10 定义径向动量算符
证明:
(a)
(b)
(c)
(d)
(e)
【证明见《量子力学习题精选与剖析》[上],4.5题】
4.5 定义径向动量算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image739.jpg?sign=1738904153-9UxePIXd1Pv4NcIl6Z07LSIVt5scnSjp-0-96df421254fde69891ca33adc0dbf15d)
试求其球坐标表达式,并求及
.
解:在经典力学中,径向动量就是动量的径向投影,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image742.jpg?sign=1738904153-oUI334IO9qoPPxmEaq8ozikvhUB7Balu-0-c512cff1ccd9af1588caca1e5e728aab)
过渡到量子力学,动量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image743.jpg?sign=1738904153-9fUdcWo3ASkd609k7oYHxAhWxjwwjS7H-0-508e9c22855123b5ac8a67f165c9fc16)
由于和r/r不对易,为了保证径向动量算符是Hermite算符,应取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image745.jpg?sign=1738904153-Hk4NaMpatkR9r11xnnL8HY0r0yS7mp8o-0-a070ced4bb888589dedf8719c13b2410)
此即式(1).利用式(3),易得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image746.jpg?sign=1738904153-CjatWAOKwQHBYKLbHSB9fM3JWPDEtNgw-0-91839e3d1c1fb3a6e57fd57695f9e546)
(4)
此即的球坐标表达式.
利用式(4),容易算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image749.jpg?sign=1738904153-IB7P2Sq10YemNtdF5VytW2wyiY7QwLL7-0-a4c7e9dc764a4f77d69d19325b265302)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image750.jpg?sign=1738904153-3MtiiKC948ubGtUD1HXDqTyfJxftWI7h-0-b6cfca467fb8484785324a6975dd0578)
3.11 利用不确定度关系估算谐振子的基态能量
解:由于一维谐振子势具有对坐标原点的反射对称性,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image751.jpg?sign=1738904153-5v5ASYgLmyeI1OYL5rKf3o8XKJ0Ygshr-0-b873a3e907a2100b982f566cbadc183e)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image752.jpg?sign=1738904153-IJ23C2HFNFlDNuXCCT0cwLBCglGOgoO5-0-0e159220a3ef8a6cee59abc111098ed3)
所以在能量本征态下
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image753.jpg?sign=1738904153-dzNI8aU5RQ3eBqkveWgbiA6uhGxNhaSp-0-61c52c61d532ebfcff6fc73c81c3fd7f)
按不确定度关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image754.jpg?sign=1738904153-iEecA80bTmfHeuvrcEKVCav15GsA61Di-0-0481202e8f78ffdfddc1f7f29cd2c567)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image755.jpg?sign=1738904153-mjrt8kbzTTflmS8cawScJY2IlSyr88vy-0-fd50a1d26c7a24629d1bef2de387fa5f)
它取极小值的条件为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image756.jpg?sign=1738904153-cK5Hs6PbtNsqLzoBUSjAAIrZSiO0sbcR-0-3a697b8211c1cadb159ba2ed83f0297f)
由此得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image757.jpg?sign=1738904153-yF5UIsaHnwqm8nEttvCsQXVQo0dABPZ3-0-897ba1b20f6cc8b734437d3b7d47901c)
用此值代入(3)式,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image758.jpg?sign=1738904153-eaV1q1QtKqn2wgL4uhLsuRFvSGdAScjt-0-f2eab8c63f6f7faad15fcce486dc0276)
所以谐振子基态能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image759.jpg?sign=1738904153-jysfxH5AaBlHXFvuDtBBNhb3HnD2bpWs-0-a77b7c15388007a1ab89d8f3255af8aa)
3.12 证明在离散的能量本征态下动量平均值为零.
证明:体系的Hamilton量为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image760.jpg?sign=1738904153-CHXpIOjSf5Ipu7waScgUg6g5EmAZHRpK-0-9ea0b17182b03ba41fd1b150715dff00)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image761.jpg?sign=1738904153-SXTLsKaTlXhML3ggnXSCcaSbvXEp8REa-0-b90819fcd2012b0e71fc4a72bda94f79)
对于束缚态,能量本征值是离散的,本征波函数ψ满足并且可以归一化,
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image764.jpg?sign=1738904153-Pigg88hrNSq0Ovggxl5POyAmWyo7tddI-0-911119f2515ea1dee3bdf3a520526628)
3.13 证明力学量x与F(px)的不确定度关系以Hamilton量
为例,结合3.12题进行讨论
证明:按《量子力学教程》3.3节,不确定度关系(8),并利用(参见3.3题)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image767.jpg?sign=1738904153-DbOASZROAmGB7E8zHrNyhsNYP0hdEkvF-0-050ae7f2b28aaf510a1e02f931ba77df)
可以得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image768.jpg?sign=1738904153-nfTPvPz0GC0NkVVpJdmnpL4n3ZEcecwz-0-12b559f95921b59287687419ea101b08)
3.14 证明在lx的本征态下
证明:假设ψm是lz的本征态,相应的本征值是,根据角动量的对易关系,
可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image772.jpg?sign=1738904153-RtVrOjap7hqRay1g2kgnZTWJ34pjBi6g-0-572fe798c4088cbae7511cb72c1089fd)
类似,利用可以证明
3.15 设粒子处于状态下,求
解:是l2及lx的本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image778.jpg?sign=1738904153-sSsErkTO3Pdcg1vnTB9t6PbhXUkvz6GZ-0-2b7102a0e98aece896376c5161e4efb2)
按3.14题,,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image780.jpg?sign=1738904153-koKKy6KGpDOPt6wFBlcHT1q6Htre4E4G-0-79885430240bf096dd11ec43795eb33f)
其次证明利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image782.jpg?sign=1738904153-xgMeXlN6HOEP270nqnROo2sW6mTqPTO6-0-5c83b3f39276a00f057860ad3cd0d38d)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image783.jpg?sign=1738904153-VPDEAkH7WspPR1eAentY7KjZ36gf0dgq-0-9f687f8f985c3f27a764aee2a6713d07)
再利用,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image785.jpg?sign=1738904153-WpTPFBkju1grs5vJvhNywEUF3pH2uGK1-0-dcf6560bd1d5b8445adce75c2f77b11a)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image786.jpg?sign=1738904153-XAaQX5lGSaPJdjHjGhtoCTya75O3ghsZ-0-41f43f92181311845f6445350389432f)
3.16 设体系处于状态(已归一化,即
(a)lz的可能测值及平均值;
(b)l2的可能测值及相应的概率;
(c)lx的可能测值及相应的概率;
解:Y11和Y20是l2和lz的共同本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image789.jpg?sign=1738904153-uVaF2RUxfHoFoD0Ebfua2eTe39HDBxyP-0-79be450d262e0797cafaadb516b23db8)
(a)lz的可能测值为n,0,所相应的测值概率分别为所以lz的平均值为
.
(b)l2的可能测值为和
,相应的测值概率分别为
.
(c)在(l2,lz)表象中lx的矩阵元公式,(参阅《量子力学教程》第9章,169页,(26)式)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image795.jpg?sign=1738904153-HWaD4aJoRecgOAkoGPtaxAW530ycLGsq-0-d0c7b911f714291cbc87fd2c058d3b9e)
可求出l=1的3维子空间中的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image797.jpg?sign=1738904153-nKeAPs1t6iNj3unaZASKBQULAmuOpuSe-0-a81832f6816e4d780730b2fde2ff2c35)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image798.jpg?sign=1738904153-I4JiH8fBSI2CMsTgQnVnMVoZjGXs2a74-0-0c0dffec98ef0e6cdb27fbff799febd6)
Y11态按这3个本征态展开的系数分别为,所以在c1Y11态下,测量lx得
的概率分别是
.
类似在l=2的3维子空间中,的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image803.jpg?sign=1738904153-HZNgYJpQ11Xx1YfQ1cvmOdckhrTM4mKG-0-497f715d742dbaea30406c291509c0c6)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image804.jpg?sign=1738904153-lShJuu539qFexw94ak39vzdpEzFN1l8k-0-732d0af8c298e92a055bc1ef77ada26e)
Y20态按这5个本征态展开的系数分别为,所以在c2Y20态下,测量l,得
的概率分别为
而在
态下测量得lx的可能值和概率分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image810.png?sign=1738904153-EDaMOZBvGePDaRRy9PSNQY9KMK0dFsZw-0-bf5fb970b983aab2fecadf4b7b136b9c)
3.17 算符A与B不对易,
证明
(对于A与B对易情况,即C=0,显然)
【证明见《量子力学习题精选与剖析》[下],3.7题】
3.7 设算符A与B不对易,[A,B]=C,但是C与A及B对易,即[A,C]=0,[B,C]=0.试证明Baker—Hausdorff公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image814.jpg?sign=1738904153-LVekiwbuQprUmZQhGVZFGkRf8MydU4kr-0-72618460efa5aaaa2032294c7e760ae4)
证明:引入参变数λ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image815.jpg?sign=1738904153-j9K52iMn6lJb52isCUFnrENfaZm87gzu-0-6710de0325a1742d8fee2728f4e6c192)
注意f(0)=1,f(1)=eAeB.上式对λ求导,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image816.jpg?sign=1738904153-lUJRGg1Zly53zlpAT1gJ5NoBWMHHZsvc-0-8248e1c5fa53dcab0ff148ff4a2b1a34)
而根据题3.6式(3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image817.jpg?sign=1738904153-lbEdYGTrEmL7eci2v0dXaBsyQ7BYFVP8-0-24586865fcfa71032b7c47e68d80b641)
代入式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image818.jpg?sign=1738904153-Z54DJWgLvnNkFNmcxsiIzVE3PamtYIrb-0-8e4b02997733c8f6d32e2ba104ca9395)
以f-1(λ)乘之,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image819.jpg?sign=1738904153-HUG2yIa3fWxM2reHYEsOprfhAxknaf85-0-78b2c1f8afa8eef0fe7fff6217d7ba2a)
积分,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image820.jpg?sign=1738904153-TDdfcNOR5y7clkWPJ0FCS8BkrjZh6rey-0-938a36727bee29d4da774e83e76ed451)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image821.jpg?sign=1738904153-YiTZs54frc1RIlvpiL0RKS0SqUA9oAFe-0-6cd38bc4fd898928bcb9147811f7a253)
由于f(0)=1,故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image822.jpg?sign=1738904153-cxX3iua84SMk5TU0q4ZlQL7JIEBSTBDa-0-9c2b5ca3b5b4f3de02a3c6b5164c1780)
以右乘上式,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image824.jpg?sign=1738904153-jxmbycVbJsgZdvwHBVggXjLTofho4hGI-0-0ceb2527bc2731f43a7d1f112e93bb93)
如令A→B,B→A,则C→[B,A]=-C,上式变成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image825.jpg?sign=1738904153-vjefG2ogWEoewdpJ99Ef44DQW5BleAxw-0-b504f6428ee0c4384a6f7bf63ffcafbb)
式(6)和(6′)中取λ=1,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image826.jpg?sign=1738904153-FSbkat9VvdPD1yZEty1qVCvecz9zcldT-0-3b8ca01e59fc61b0491b51ea8ae1495a)
如A、B对易,则C=0,上式即还原成题3.1式(4).
3.18 设A与B是两个不对易的算符,α为一个参数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image827.jpg?sign=1738904153-g8NsAZLrTzwqkR8fPGP9K3wdz9JOofrQ-0-74c252f35562a5f3ef2f6a561431a12d)
【证明见《量子力学习题精选与剖析》[下],3.5题】
3.5 给定算符,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image829.jpg?sign=1738904153-DG6mYvNpTynOxSb2bg4j4M4khBOceHxR-0-e9eea99296601f5cc5925bb1cda8028c)
证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image830.jpg?sign=1738904153-QWsFW3x3lgWImL3Kx4OWaPnkm49Hvdiv-0-407c8b795372b64642847c9c0ab2e21f)
证明:引入参变数ξ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image831.jpg?sign=1738904153-Z7OHlbWys05dV2AX8IIKsmowJCSv9kEG-0-fe02ff65c99d5e252135430229cf477e)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image832.jpg?sign=1738904153-77mvCQzV7kdHbM7Wny0NEY2dpjEu9A96-0-391e41122ac94ff967924f0a71a5114b)
对ξ求导,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image833.jpg?sign=1738904153-qWSUUT12DnIdNhdVOuY17ftw7shBSeu1-0-562946b091c9bb1ba00ad2e0784c8545)
根据Taylor公式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image834.jpg?sign=1738904153-DqGnZkDKR08ZmobTFSjFnATVTvlfxrdj-0-70084b9343831cb730a3bc8eaf10ed4c)
而由式(3),令ξ→0即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image835.jpg?sign=1738904153-qXXkqAi5ixn7hfTfGPfDENpXL8Zsj3KO-0-93fab8052ddb341664b64d6ef27aed96)
代入式(4),并顾及式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image836.jpg?sign=1738904153-Ty4cZb5WfZcgaspxyj0yMMhcp2qsIcZh-0-5f19ef62143ee017e2e4a2defc31d73e)
亦即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image837.jpg?sign=1738904153-7pLT4lg8Vhjuk4AAeXIf6ucuOJw4Xehf-0-48884df10bf7e6bdc1dbd1073456c195)